Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 3461-3462
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 104, No. 11 ( 2004-11-16), p. 1341-1341
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 1341-1341
    Abstract: Transfer of naive antigen-specific T cells into self-antigen expressing transgenic mice leads to the development of hyporesponsiveness and deletion of the self-reactive T cells. This form of functional tolerance is characterized by decreased recall responses both in vivo and in vitro. Although the development of tolerance has been studied extensively, few studies have analyzed the factors that determine the breakdown of tolerance and how host cell populations influence the process. Using transgenic mice that express a secreted form of ovalbumin (sOVA Tg) in the serum either on a wildtype (WT) or a T-cell deficient (TCRa−/−), or B- and T-cell deficient (Rag−/−) background, we investigate tolerance development of OVA-specific DO11.10 CD4+ T cells that have been transferred into these mice. We report kinetics, phenotypes and cytokine production of the antigen-specific T cells after transfer. We further describe the histological, immunohistochemical and clinical picture and the effects of cytokine blockade by administration of antibodies. Naïve OVA-specific T cells that encounter OVA as a self-antigen in lymphocyte-sufficient recipients undergo some expansion, followed by a contraction phase, and become functionally hyporesponsive to the antigen. In contrast, adoptive transfer of DO11 cells into Rag-deficient sOVA Tg animals results in rapid development of wasting and death, phenotypically and histologically resembling cytokine release syndrome or acute GvHD. Histologic examination reveals inflammatory infiltrates predominantly in the skin and gut. Under these circumstances the transferred DO11 cells undergo massive expansion and produce abundant amounts of IL-2 and IFN-g. In contrast, transfer into TCRa-deficient sOVA Tg animals, in which B cells are present, leads to similar T cell expansion but substantially reduced IFN-g production and no death. Our data suggest that T cell tolerance in vivo is critically dependent on an intact, lymphocyte-sufficient host. In the absence of endogenous lymphocytes, T cells specific for a systemic self-antigen are activated and cause lethal immune reactions.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2008
    In:  The Journal of Immunology Vol. 180, No. 5 ( 2008-03-01), p. 2762-2766
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 180, No. 5 ( 2008-03-01), p. 2762-2766
    Abstract: Multiple pathways can induce and maintain peripheral T cell tolerance. The goal of this study was to define the contributions of apoptosis and anergy to the maintenance of self-tolerance to a systemic Ag. Upon transfer into mice expressing OVA systemically, OVA-specific DO11 CD4+ T cells are activated transiently, cease responding, and die. Bim is the essential apoptosis-inducing trigger and apoptosis proceeds despite increased expression of Bcl-2 and Bcl-x. However, preventing apoptosis by eliminating Bim does not restore proliferation or cytokine production by DO11 cells. While Foxp3 is transiently induced, anergy is not associated with the stable development of regulatory T cells. Thus, apoptosis is dispensable for tolerance to a systemic self-Ag and cell-intrinsic anergy is sufficient to tolerize T cells.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2008
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-01-09)
    Abstract: Aberrant gene expression is a hallmark of acute leukemias. MYB-driven transcriptional coactivation with CREB-binding protein (CBP)/P300 is required for acute lymphoblastic and myeloid leukemias, including refractory MLL-rearranged leukemias. Using structure-guided molecular design, we developed a peptidomimetic inhibitor MYBMIM that interferes with the assembly of the molecular MYB:CBP/P300 complex and rapidly accumulates in the nuclei of AML cells. Treatment of AML cells with MYBMIM led to the dissociation of the MYB:CBP/P300 complex in cells, its displacement from oncogenic enhancers enriched for MYB binding sites, and downregulation of MYB-dependent gene expression, including of MYC and BCL2 oncogenes. AML cells underwent mitochondrial apoptosis in response to MYBMIM, which was partially rescued by ectopic expression of BCL2. MYBMIM impeded leukemia growth and extended survival of immunodeficient mice engrafted with primary patient-derived MLL-rearranged leukemia cells. These findings elucidate the dependence of human AML on aberrant transcriptional coactivation, and establish a pharmacologic approach for its therapeutic blockade.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Lymphoma Myeloma and Leukemia, Elsevier BV, Vol. 19, No. 10 ( 2019-10), p. e65-
    Type of Medium: Online Resource
    ISSN: 2152-2650
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2540998-0
    detail.hit.zdb_id: 2193618-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 4782-4782
    Abstract: Resistance to therapy is one of the major challenges in cancer treatment today, equally applicable to conventional chemotherapy as well as targeted therapy. Malignant tumors have widespread epigenetic alterations including aberrant expression of chromatin modifiers in a wide variety of tumors and chromosomal translocations involving chromatin modifiers that can drive development of some cancers. In addition, cancer genome sequencing studies have identified frequent somatic alterations in many chromatin-regulating enzymes. Moreover, epigenetic changes have been implicated in the development of drug resistance. T cell acute lymphoblastic leukemia (T-ALL) has a high rate of treatment-refractory disease and relapse that significantly lowers survival rates compared to other forms of ALL. The identification of activating somatic NOTCH1 mutations in over 50% of patients with T-ALL led to the development of γ-secretase inhibitors (GSI) that prevent cleavage and activation of NOTCH1. Although effective in vitro, the rapid development of resistance that develops with Notch inhibition in vivo has so far prevented the translation of these inhibitors into the clinical setting. We have developed a model of therapeutic resistance to inhibition of Notch signaling in T-ALL. In this model, ‘persister’ cells readily expand in the presence of GSI and the absence of Notch signaling. Rare persister cells are pre-existing in naïve T-ALL populations. Intriguingly, in vitro resistance to NOTCH1 inhibitor therapy is reversible, suggesting that it is epigenetically mediated. When compared to GSI-sensitive cells, persisters are characterized by distinct signaling and gene expression programs, and demonstrate global chromatin compaction. Using a short-hairpin knock-down screen of ∼ 300 known chromatin regulators we identified the chromatin reader BRD4 as essential for persister T-ALL cells. BRD4 expression levels are upregulated in persister T-ALL cells. Genome-wide binding studies of BRD4 show that it is found at active regulatory elements in the genome that are associated with genes known to be important for cell proliferation, survival and signaling pathways in T-ALL, e. g. MYC and BCL2. Treatment of persisters with the BRD4 inhibitor JQ1 down-regulates expression of these target genes. Functionally, JQ1 treatment leads to growth arrest and apoptosis in persister T-ALL cells, at doses well tolerated by GSI-sensitive leukemia cells. Furthermore, combination therapy of GSI and JQ1 is significantly more effective over vehicle or single agent therapy for primary human T-ALLs in vitro and in vivo. These studies demonstrate epigenetic heterogeneity as a basis of drug resistance in leukemia. We suggest that combination therapies that include targeting of chromatin regulators may hold great therapeutic promise for prevention and treatment of resistant disease. Citation Format: Birgit Knoechel, Justine Roderick, Kaylyn Williamson, Jiang Zhu, Jens Lohr, Matthew Cotton, Shawn Gillespie, Daniel Fernandez, Manching Ku, Hongfang Wang, Federica Piccioni, Serena Silver, Mohit Jain, Daniel Pearson, Michael Kluk, Christopher Ott, Dale Greiner, Michael Brehm, Leonard Shultz, Alejandro Gutierrez, Kimberly Stegmaier, Marian Harris, Lewis Silverman, Stephen Sallan, Andrew Kung, David Root, James Bradner, Jon Aster, Michelle Kelliher, Bradley Bernstein. Epigenetic resistance to Notch inhibition in T cell acute lymphoblastic leukemia. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4782. doi:10.1158/1538-7445.AM2014-4782
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2004
    In:  Autoimmunity Reviews Vol. 3, No. 7-8 ( 2004-11), p. 471-475
    In: Autoimmunity Reviews, Elsevier BV, Vol. 3, No. 7-8 ( 2004-11), p. 471-475
    Type of Medium: Online Resource
    ISSN: 1568-9972
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2004
    detail.hit.zdb_id: 2099325-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 499-500
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 604-604
    Abstract: Although contemporary combination chemotherapy can cure a substantial fraction of patients with T-cell acute lymphoblastic leukemia (T-ALL), front-line therapy fails in 15-20% of children and 50-70% of adults, and these patients have a poor prognosis. Strikingly, half of treatment failure events in childhood T-ALL are induction failure, suggesting pre-existing resistance to chemotherapeutics with distinct molecular targets. The molecular basis for induction failure remains poorly understood. Recent work has shown that mitochondrial apoptosis resistance is a cellular phenotype that predicts chemotherapy failure in some tumor types. However, the molecular mechanisms responsible for the striking variability in chemotherapy response among different patients with seemingly identical tumors remain largely unknown. Using a technique known as BH3 profiling, we analyzed mitochondrial apoptosis sensitivity or resistance in pre-treatment clinical specimens from a cohort of 47 children and adolescents treated on the COG AALL0434 or DFCI 05001 clinical trials. We found that mitochondrial apoptosis resistance was strongly associated with a poor response to induction chemotherapy (P = 0.008), as well as inferior 5-year event-free survival (65% vs 88%; P = 0.036 by log-rank test). Apoptosis resistance was weakly associated with the early T-cell precursor (ETP) immunophenotype (P = 0.08), but univariate and multivariable Cox regression analysis including both revealed that apoptosis resistance predicts clinical outcome more strongly than ETP status. To identify molecular lesions underlying mitochondrial apoptosis resistance, we applied targeted exome sequencing and array CGH to this cohort. We found that loss-of-function mutations in genes encoding core components of the polycomb repressive complex 2 (PRC2), including EZH2, EED or SUZ12, are associated with resistance to mitochondrial apoptosis (P = 0.015). PRC2 is a chromatin-modifying complex best known for its role in transcriptional repression. The PRC2 complex has been implicated as a tumor suppressor in T-ALL, but whether PRC2 plays a direct role in chemotherapy response is unknown. To test whether PRC2 regulates mitochondrial apoptosis in human T-ALL, we performed shRNA knockdown of the PRC2 core components EZH2, EED or SUZ12 in human T-ALL cell lines. Knockdown of each of these genes significantly induced mitochondrial apoptosis resistance, as assessed by BH3-profiling. This effect was dependent on the lysine methyltransferase activity of the PRC2 complex, because the effect of EZH2 knock-down was rescued by expression of wild-type EZH2, but not a point mutant that is methyltransferase-defective (P 〈 0.001). PRC2 knockdown also induced significant resistance to apoptosis induction (assessed using caspase 3/7 activation or annexin V/PI staining) in response to various chemotherapeutics with distinct molecular targets, including vincristine, dexamethasone, asparaginase, methotrexate, mercaptopurine, nelarabine, cytarabine and etoposide. To test whether PRC2 regulates mitochondrial apoptosis during normal T-cell development, we took advantage of mice heterozygous for a floxed Ezh2 or Eed allele, and induced deletion of one allele in hematopoietic cells using Mx-Cre activation by pIpC. Controls were Ezh2 and Eed wild-type mice with Mx-Cre activation. BH3 profiling analysis revealed that loss of one Ezh2 or Eed allele is sufficient to induce apoptosis resistance in non-transformed double-negative thymocytes (P = 0.003 for Ezh2 and P = 0.008 for Eed), suggesting that chemotherapy resistance can develop prior to oncogenic transformation. To define the transcriptional consequences of PRC2 inhibition in T-ALL, we performed RNA sequencing of T-ALL cells infected with shRNAs targeting EZH2, EED or SUZ12 (2 independent hairpins for each gene), or two control shRNAs. RNA sequencing analysis revealed a number of candidate transcriptional targets linking PRC2 to the mitochondrial apoptotic machinery, which are currently being investigated using functional genetics and small molecule inhibitors. Collectively, these data implicate polycomb repressive complex 2 function as a key determinant of chemotherapy response in childhood T-ALL. Defining the mechanism linking PRC2 to the mitochondria will provide a rational target for therapeutic intervention. Disclosures Teachey: Novartis: Research Funding. Letai:AbbVie: Consultancy, Research Funding; Tetralogic: Consultancy, Research Funding; Astra-Zeneca: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 889-889
    Abstract: The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. We analyzed pre-treatment T-ALL clinical specimens from a cohort of 47 patients (enriched for treatment failure, but with sufficient controls) treated on the COG AALL0434 or DFCI 05001 clinical trials using BH3 profiling analysis to assess mitochondrial apoptotic priming. We found that there was a strong association between resistance to mitochondrial apoptosis and a poor response to induction chemotherapy (P = 0.008). Furthermore, mitochondrial apoptosis resistance predicted significantly inferior event-free survival (65% vs. 91% at 5 years; P = 0.0376). To define the molecular determinants of this mitochondrial apoptosis resistance, we performed targeted exon sequencing and array CGH copy number analysis. This revealed that loss-of-function mutations in the polycomb repressive complex 2 (PRC2) core subunits (EZH2, EED or SUZ12) were associated with mitochondrial apoptosis resistance (P = 0.007) in clinical specimens. PRC2 is a chromatin modifying complex best known for its role in transcriptional repression, which functions as a tumor suppressor in T-ALL, but whether PRC2 regulates mitochondrial apoptosis is unknown. Using shRNA knockdown in human T-ALL cells, we found that depletion of PRC2 subunits in T-ALL cells induced mitochondrial apoptosis resistance, as assessed by BH3 profiling analysis (P 〈 0.001). PRC2 inactivation also induced resistance to chemotherapy-induced apoptosis (P 〈 0.0001), and increased T-ALL fitness following treatment with the antileukemic drug vincristine (P = 0.0001). Apoptosis resistance upon inactivation of EZH2 (a PRC2 catalytic subunit) was reversed by transduction of wild-type EZH2, but not by an EZH2 point mutant with impaired methyltransferase activity, indicating that this effect is mediated by the enzymatic activity of PRC2. In normal mouse thymocytes, heterozygous deletion of the PRC2 subunits Ezh2 or Eed was sufficient to induce apoptosis resistance in non-transformed double-negative T-cell progenitors (P 〈 0.010), indicating that apoptosis resistance can arise prior to oncogenic transformation. The best-known regulators of mitochondrial apoptosis are BCL2-family genes, but RNA-seq analysis of shRNA knockdown of the PRC2 subunits in a T-ALL cell line revealed that PRC2 did not regulate expression of any of the known BCL2 family members. Instead, PRC2 loss led to upregulation of TRAP1, a mitochondrially localized chaperone of the HSP90 family. TRAP1 upregulation was necessary for induction of apoptosis resistance following PRC2 inactivation, because shRNA knockdown of TRAP1 in the human CCRF-CEM cell line completely blocked induction of apoptosis resistance following PRC2 inactivation (P 〈 0.0001). Moreover, pharmacologic TRAP1 inhibition synergized with the antileukemic drugs dexamethasone and doxorubicin (combination index = 0.37 and 0.42, respectively). To define how PRC2 regulates TRAP1, we performed ChIP-seq analysis, which revealed that TRAP1 regulation by PRC2 is indirect. Combined ChIP-seq and RNA-seq analysis revealed a number of direct targets of PRC2, all of which were tested for their ability to upregulate TRAP1 and induce apoptosis resistance. This showed that the LIM domain transcription factor CRIP2 is a direct target of PRC2 that is necessary and sufficient for regulation of TRAP1, and for induction of apoptosis resistance downstream of PRC2 inactivation. To confirm the relevance of our findings, we used the EZH2 inhibitor GSK126 to inhibit enzymatic activity of PRC2, which revealed that EZH2 normally represses CRIP2 and TRAP1 expression in primary patient-derived xenografts. Finally, we found that increased TRAP1 expression correlates with treatment failure in T-ALL clinical specimens (P = 0.028). Taken together, our findings support a model in which loss of PRC2 induces transcriptional upregulation of its direct target CRIP2, which subsequently activates expression of TRAP1, leading to resistance to chemotherapy-induced mitochondrial apoptosis. Disclosures Aries: Pfizer: Employment. Teachey:Amgen: Consultancy; La Roche: Consultancy. Letai:AstraZeneca: Consultancy, Other: Lab research report; AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages