Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 11-11
    Abstract: Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival and continually adapt to the bone marrow (BM) microenvironment. We investigated how the BM microenvironment impacts the response to energy-depriving OxPhos inhibition in AML using a novel complex I OxPhos inhibitor (OxPhosi), IACS-010759. We have reported that OxPhosi-resistant primary AML samples demonstrated higher baseline transcription of genes related to cell adhesion, integrin and/or Rho GTPase family genes that modulate intracellular actin dynamics. (Yang et al. ASH 2019) In this study, we performed Cap Analysis of Gene Expression (CAGE) transcriptome analyses using IACS-010759-sensitive and -resistant AML PDXs. CAGE identifies and quantifies the 5' ends of capped mRNA transcripts (= transcription start sites) and allows investigating promoter structures necessary for gene expression. Primary AML cells from 9 AML PDXs were injected into irradiated NSG mice, which were randomized upon documented engraftment to receive IACS-010759 or vehicle (n = 3/group). The antileukemia efficacy of the treatment was monitored by serial measurements of circulating AML cells. Of the 9 models tested, we defined 4 PDXs as sensitive and 5 as resistant to OxPhos inhibitor therapy. In the resistant models, CAGE analysis of OxPhosi-induced changes (comparing pretreatment with posttreatment) identified upregulation of 77 promoters and downregulation of 207 promoters (log 2-fold change & gt; 3.0, FDR & lt; 0.05, EdgeR), including increased promoter expression ( & gt;3.0 fold) of genes associated with adhesion (CCR8,ADGRB2, LAG3, BMF, ATN1, PLXDC1), migration (CCR8, NKX3-2, TMEM123, IGLV7-43, FAM171A1, LBX2, TRAV21, PPP2R5C, BMF, PLXDC1), and actin cytoskeleton dynamics (FAM171A1, BMF, BEST1, PLXDC1). Of note, the 6 adhesion-associated promoters that were upregulated by OxPhosi in 5 of the OxPhosi-resistant mouse models were unchanged or downregulated in the 4 OxPhosi-sensitive models. We then used DEGseq, an R package for identifying differentially expressed genes, to identify promoters whose expression was different between OxPhosi-treated and vehicle-treated groups in the OxPhosi-resistant mouse models. DEGseq detected consistent changes of 214 upregulated and 626 downregulated promoters with OxPhosi treatment in all 5 mouse models. KEGG pathway enrichment analysis was performed with these consistently changed genes and revealed that OxPhos inhibitor treatment significantly upregulated the transcripts of cell adhesion pathway. We then confirmed that BM derived mesenchymal stem cells (MSC) protected OxPhosi-sensitive OCI-AML3 cells; the IC50 of IACS-010759 under MSC coculture was 80-fold higher than in monoculture conditions (IC50; 0.04 nM in monoculture vs. 3.25 nM in coculture), and IACS-010759 (10nM) induced 55% reduction of viable cells in coculture condition as compared to 70% reduction in monoculture. We further observed that OCI-AML3 cells adhered to MSCs were more profoundly protected from OxPhosi induced apoptosis than nonadherent cells. These results indicate that BM stromal cells, in particular those in direct contact with leukemia cells, play a key role in the microenvironment-mediated protection of AML cells from metabolic stress caused by OxPhos blockade. We further observed promoter upregulation of ASS1, coding Argininosuccinate Synthase 1 and of LRP1, coding LDL Receptor Related Protein 1. Argininosuccinate Synthase 1 is an epigenetically regulated key enzyme in the biosynthesis of arginine and energy starvation that induces adaptive transcriptional upregulation of ASS1. LDL Receptor Related Protein 1 plays a major role in lipid metabolism and has been reported to be responsible for hemin-induced autophagy in leukemia cells. These might contribute to intrinsic AML resistance to OxPhosi via activation of compensatory metabolic pathways, amino acid metabolism and lipid metabolism. Taken together, our data highlight the importance of direct interaction with BM stromal cells as well as complementally modification of amino acid- and lipid metabolism for the resistance of AML cells to OxPhos inhibition. While the mechanisms of stroma-leukemia interactions are likely complex, reducing the adhesion of AML cells to nurturing stromal cells ameliorates the resistance to the metabolic and energetic consequences of OxPhos inhibition. Disclosures Andreeff: Amgen: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding. Konopleva:Rafael Pharmaceutical: Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; Sanofi: Research Funding; AstraZeneca: Research Funding; Cellectis: Research Funding; AbbVie: Consultancy, Research Funding; Ablynx: Research Funding; Agios: Research Funding; Ascentage: Research Funding; Eli Lilly: Research Funding; Forty-Seven: Consultancy, Research Funding; Stemline Therapeutics: Consultancy, Research Funding; Amgen: Consultancy; F. Hoffmann La-Roche: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Kisoji: Consultancy; Calithera: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2659-2659
    Abstract: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematologic malignancy with historically poor outcomes and no established standard of care. Nearly 100% of patients with BPDCN overexpress CD123, and targeting CD123 has therefore emerged as an attractive therapeutic target. UCART123v1 is an allogeneic "off the shelf" product composed of genetically modified T-cells expressing an anti-CD123 CAR and a RQR8 depletion ligand, which confers susceptibility to rituximab. The expression of the T-cell receptor αβ (TCRαβ) is abrogated through the inactivation of the TRAC gene, using Cellectis' TALEN® gene-editing technology. We have previously reported the selective in vitro anti-tumor activity of UCART123v1 cells against primary BPDCN samples using cytotoxicity and T-cell degranulation assays, as well as the secretion of IFNγ and other cytokines (IL2, IL5, IL6, IL-13 and TNF-α) by UCART123v1 cells when cultured in the presence of BPDCN cells (Cai et al, 2017 ASH). To evaluate anti-tumor activity of UCART123v1 cells in vivo, we established two relapsed BPDCN patient-derived xenografts (PDX1 and 2) in NSG-SGM3 mice. In PDX-1 model, mice were randomized upon tumour engraftment (D21 after primary BPDCN injection) into 4 groups and received an IV injection of either vehicle, 10×106 TCRαβ KO control T-cells, or UCART123v1 cells (3×106 or 10×106 cells). Mice from vehicle group died by D53 after BPDCN injection with high tumor burden in PB, spleen and BM. 3 out of 9 (33%) mice treated with 3×106 and 6 out of 9 (67%) mice treated with 10×106 UCART123v1 were alive and disease-free at the end of the study (D299 after primary BPDCN injection). In PDX-2 model, which received the same treatment as PDX-1 (at D19 after primary BPDCN cell injection), all vehicle-treated mice died by D49. UCART123v1 therapy extended survival of treated mice to 104-241 days, but tumors relapsed at 90-155 days (Fig. 1A). The relapses in UCART123v1 treated mice were associated with the emergence of CD123-, CD56+CD45+ BPDCN cells infiltrating spleens and BMs (Fig. 1B). To understand the molecular basis for CD123 loss, we isolated RNA from CD123+ cells from two of the vehicle-treated mice and CD123- cells from four of the UCART123v1-treated mice and performed RT-PCR and RNA-sequencing. The cells from all samples were hCD45+ and hCD56+, indicating leukemic origin. These analyses detected the presence of full-length transcripts (exons 2-12) in both CD123+ control samples (Sample 1 and 2in Fig. 1C). In 2 of the 4 CD123- samples, CD123 transcripts were absent, as were transcripts of neighbouring genes (samples 3 and 9 in Fig. 1C). RNA-sequencing reads aligned to Genome Browser tracks for CD123 and housekeeping gene GPI showed no reads present for CD123 but reads present for GPI in the two samples with CD123 loss. The aCGH (Array‐Based Comparative Genomic Hybridization) results showed that samples 3 and 9 (CD123-) had large regional deletions on chromosome X, which includes the CD123 gene. In another sample (sample 5), the splicing analysis algorithm MAJIQ detected CD123 transcripts containing only exons 2-9, indicating premature transcription termination. If translated, this truncated transcript would produce a protein isoform lacking the transmembrane domain in exon 10. Finally, MAJIQ also revealed canonical splicing of exon 2 to exon 3 in all CD123+ samples but a sharp increase in skipping from exon 2 to exon 5 in sample 16 (Fig. 1D). This exon-skipping event preserves the open-reading frame and yields the previously reported transcript variant 2. Per UniProt, the resultant protein will retain the ligand-binding domain but lack several glycosylation sites and two beta sheets in the extracellular domain, potentially compromising recognition by UCART123v1 cells. The aCGH and FISH results further showed that this patient sample harbored TP53 deletion, which could have contributed to DNA instability observed in different mice engrafted with these tumor cells. In summary, allogeneic anti-CD123 CAR T therapy resulted in eradication of BPDCN in vitro and in increased disease-free survival in primary BPDCN PDX models. However, CD123 loss was observed in one PDX model harboring a TP53 deletion. These results provide preclinical proof-of-principle that UCART123v1 cells have potent anti-BPDCN activity, and indicate potential mechanisms leading to antigen loss and disease relapse. Disclosures Galetto: Cellectis Inc: Employment. Gouble:Cellectis: Employment. Zhang:The University of Texas M.D.Anderson Cancer Center: Employment. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Neelapu:Cellectis: Research Funding; Celgene: Consultancy, Research Funding; Kite, a Gilead Company: Consultancy, Research Funding; BMS: Research Funding; Poseida: Research Funding; Novartis: Consultancy; Karus: Research Funding; Acerta: Research Funding; Incyte: Consultancy; Pfizer: Consultancy; Merck: Consultancy, Research Funding; Unum Therapeutics: Consultancy, Research Funding; Precision Biosciences: Consultancy; Cell Medica: Consultancy; Allogene: Consultancy. Lane:AbbVie: Research Funding; Stemline Therapeutics: Research Funding; N-of-One: Consultancy. Kantarjian:BMS: Research Funding; Amgen: Honoraria, Research Funding; Cyclacel: Research Funding; Agios: Honoraria, Research Funding; Novartis: Research Funding; Immunogen: Research Funding; Jazz Pharma: Research Funding; Pfizer: Honoraria, Research Funding; Ariad: Research Funding; Takeda: Honoraria; Astex: Research Funding; Daiichi-Sankyo: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Research Funding. Guzman:Cellectis: Research Funding; Samus Therapeutics: Patents & Royalties: intellectual rights to the PU-FITC assay; SeqRx: Consultancy. Pemmaraju:Stemline Therapeutics: Consultancy, Honoraria, Research Funding; samus: Research Funding; plexxikon: Research Funding; incyte: Consultancy, Research Funding; affymetrix: Research Funding; sagerstrong: Research Funding; Daiichi-Sankyo: Research Funding; cellectis: Research Funding; celgene: Consultancy, Honoraria; abbvie: Consultancy, Honoraria, Research Funding; novartis: Consultancy, Research Funding; mustangbio: Consultancy, Research Funding. Konopleva:Genentech: Honoraria, Research Funding; Ablynx: Research Funding; Astra Zeneca: Research Funding; Agios: Research Funding; Eli Lilly: Research Funding; Forty-Seven: Consultancy, Honoraria; Calithera: Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Amgen: Consultancy, Honoraria; Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3831-3831
    Abstract: Despite advances in understanding of the biology of acute myeloid leukemia (AML), cure remains elusive for the majority of patients. ABT-199 (Venetoclax) is a small-molecule BH3 mimetic that selectively inhibits BCL-2 causing cell death. ABBV-744 is a highly selective inhibitor for the BDII of BET family proteins, exhibiting greater than 300-fold more potent binding affinity to the BDII bromodomain of BRD4 relative to BDI (Warren Kati AACR 2018; Xiaoyu Lin AACR 2018). In this study, we evaluated the anti-leukemia efficacy of the concomitant BCL-2 blockade by venetoclax and of BDII inhibition with ABBV-744 in primary AML samples. First, anti-leukemia activity of venetoclax and ABBV-744 was examined in 12 primary AML samples with diverse genomic alterations. The combination significantly enhanced cell death (61.4% ± 8.7%), as compared to the single agent treatment (51.4% ± 9.3% in venetoclax 10 nM group and 22.2% ± 3.4% in ABBV-744 50 nM group, p & lt;0.001). ABBV-744 inhibited cell proliferation in the majority of AML cases (31.7% ± 8.2 %), and the cell growth suppression was more profound in the combination group (82.9% ± 6.9%, p & lt;0.001). Most importantly, three of 12 patients were resistant to venetoclax, but two of these were sensitive to ABBV-744 or ABBV-744/venetoclax combination. We next performed the whole genome transcriptome analysis of pre-treatment AML cells by RNA-sequencing (RNA-seq). The samples which were sensitive to venetoclax and to the combination with ABBV-744 were characterized by high levels of BCL2 and mid-low level of MCL1 expression. In addition, low mRNA expression of AR, IL1R1 expression and high CCND1 expression correlated with response of primary AML cells to the combination of venetoclax and ABBV-744. To test the efficacy of this regimen in vivo, we established a patient-derived xenograft (PDX) from an AML patient in NSG mice. After 21 days of therapy, flow cytometry data demonstrated significantly reduced leukemia burden in venetoclax treated group (9.5% ± 1.7%) but not in ABBV-744 group (22.3% ± 5.8%) compared to controls (30.8% ± 3.9%), with lowest tumor burden in the combination group (5.0% ± 0.8%, p & lt;0.01). No significant impact on mice’ weight was noted, and no clinical signs of toxicity recorded over the course of therapy. The experiment is ongoing, and the survival analysis will be reported. Next, the anti-leukemia efficacy of ABBV-744 was tested in 7 additional AML PDX models. In all of the 7 models, Combination of ABBV-744 and venetoclax treatment delayed AML progression compared to untreated mice (survival days: 141 vs 105, 275 vs 153, 62 vs 46, 136 vs 119, 138 vs 77, 129 vs 116, 94 vs 86). In summary, combinatorial blockade of BDII bromodomain and of BCL-2 anti-apoptotic pathway facilitates apoptotic cell death and suppresses proliferation in the majority of primary AML cells and produces anti-AML activity in AML PDX models in vivo. Citation Format: Tianyu Cai, Vinitha Kuruvilla, Xiaoyu Lin, Tamar Uziel, Xin Lu, Lu Zhang, Qi Zhang, Lina Han, Antonio Cavazos, Yu Shen, Marina Konopleva. Selective targeting BET family BDII bromodomain with ABBV-744 and BCL-2 with venetoclax (ABT-199) is synergistic in primary acute myeloid leukemia models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3831.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 13-14
    Abstract: Despite recent approval of hypomethylating agent/venetoclax (HMA+VEN) therapy for older patients (pt) with AML unfit for induction chemotherapy, their outcomes remain suboptimal. Such pts have a median overall survival of only 14 months and only approximately 35% of pts enjoying long-term survival (DiNardo, EHA 2020). Approximately 20-40% of newly diagnosed older pts with AML do not respond to the HMA+VEN regimens, with higher rates of refractory disease as well as early relapse in high-risk pts. Metabolic reprogramming and dependence on mitochondrial oxidative phosphorylation (OxPhos) is a core feature of AML leukemia stem cells (LSC). Recent reports have shown that upregulation of OxPhos confers intrinsic and acquired resistance to VEN in AML, multiple myeloma and lymphoid malignancies, which can be reversed by disrupting OxPhos; mutated TP53 has been shown to confer intrinsic resistance to venetoclax through increased OxPhos (Nechiporuk T, et al. Cancer Discovery 2019). We hypothesized that combined blockade of mitochondrial fitness by OxPhos inhibitors and of BCL-2 with VEN/azacitidine (AZA) will perform synergistically in pre-clinical AML models. To test this hypothesis, we utilized a novel complex I inhibitor IACS-010759 that effectively inhibits cell respiration and leukemia progression in the in vitro and in vivo AML pre-clinical models (Molina, Nat Med 2018). Priming of MOLM-13 cells with 20nM VEN for 24hrs followed by 10nM IACS-010759 for 1hr triggered 60% reduction in oxygen consumption rate (OCR), while single agents reduced OCR by & lt;15%. This translated into accelerated loss of the mitochondrial membrane potential measured by JC-1 flow cytometry, cleavage of caspase 3 and synergistic reduction ( & gt;70%) of viable cell numbers in several AML cell lines tested (OCI-AML2, MV-4-11, and MOLM-13) (Figure 1). By co-immunoprecipitation VEN disrupted interaction of BCL-2 with the mitochondrial protein VDAC, known to regulate ADP/ATP exchange during electron transport across mitochondria membrane; this resulted in dramatic reduction of the intracellular ATP and CTP levels measured by MS-based metabolomics. Further, VEN increased intracellular levels of AMP, UMP, CMP and GMP and this accumulation of mono-nucleotides was enhanced by the combination of VEN and IACS-010759, possibly because of RNA degradation. In primary AML samples (n=3) and AML PDX cells (n=4) cultured ex vivo, combined VEN and IACS-010759 at low nanomolar doses reduced viable cell numbers in an additive or synergistic fashion. We next tested the efficacy of the "triple" combination of VEN, AZA and IACS-010759 in the in vivo AML PDX models. We injected AML PDX cells 3871344 (with no mutations identified by targeted sequencing) and 4404778 (harboring IDH1, NPM1, FLT3-ITD mutations) into NRG mice and upon engraftment, randomized mice into 4 groups to receive 2 cycles of treatment with 3 weeks interruption between cycles: vehicle, VEN (50mg/kg daily, 5 days on/2 days off, day 1-21) with AZA (2.5 mg/kg daily, day 1-7), IACS-010759 (1mg/kg ?daily, 5 days on/2 days off, day 1-14), or the triple combination. Therapy was well tolerated, without any apparent weight loss or toxicities. In the less aggressive model 3871344, all therapies reduced circulating leukemia burden, and the triple treatment achieved best efficacy, with average circulating tumor burden at 10 weeks after cycle 2 of 90.8%, 38.7%, 68.8% and 7.4% in vehicle, VEN+AZA, IACS-010759, and triple-therapy cohorts, respectively. In the aggressive model 4404778, the treatments were less effective, but the combination offered highest activity, with average circulating tumor burden of 71.0%, 52.3%, 88.7% and 39.9% in vehicle, IACS-010759, VEN+AZA and triple-therapy cohorts, respectively (Figure 1). Analysis of survival and additional PDX models are ongoing and will be reported. In summary, our study demonstrates that BCL-2 modulates mitochondrial respiration and mitochondrial ATP generation in addition to its established anti-apoptotic role. VEN disrupts the BCL-2/VDAC interactions and reduces mitochondrial respiration, which is facilitated by the combined therapy with mitochondrial complex I inhibitor. Our preliminary findings indicate potent anti-AML activity of the dual and triple (with hypomethylating agent) combinations in vitro and in vivo. Disclosures Konopleva: Ascentage: Research Funding; Amgen: Consultancy; Stemline Therapeutics: Consultancy, Research Funding; Rafael Pharmaceutical: Research Funding; Sanofi: Research Funding; Agios: Research Funding; Ablynx: Research Funding; Calithera: Research Funding; AbbVie: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Cellectis: Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; Kisoji: Consultancy; AstraZeneca: Research Funding; Forty-Seven: Consultancy, Research Funding; Eli Lilly: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 911-911
    Abstract: Acute myeloid leukemia (AML) cells highly depend on oxidative phosphorylation (OxPhos) to satisfy their heightened demands for energy, and the complex I OxPhos inhibitor IACS-010759 (Molina, Nat. Med. 2018) is currently in Phase 1 clinical trial in AML. In this study, we investigated how the bone marrow (BM) microenvironment affects the response to OxPhos inhibition in AML. To characterize the molecular mechanisms of sensitivity to OxPhos inhibition, we performed Cap Analysis of Gene Expression analysis (CAGE) on 31 genetically diverse primary AML samples (20 were defined as sensitive and 11 as resistant to IACS-010759; cut off & gt;3.0 fold annexin V(+) by 100 nM IACS-010759/DMSO at 72 hours). CAGE identified higher expression of transcription start sites (TSS) for 17 genes in IACS-010759 resistant AML samples compared to sensitive (fold change & gt;2.0, FDR & lt; 0.05, EdgeR), which were related to cell adhesion, integrin and/or Rho GTPase family genes that modulate intracellular actin dynamics. We next investigated the interactions between IACS-010759 sensitive OCI-AML3 cells and BM-derived mesenchymal stem cells (MSC). Under conditions mimicking the BM microenvironment, IACS-010759 upregulated the pathways of focal adhesion and ECM-receptor interaction in OCI-AML3 cells (KEGG analysis based on CAGE). In turn, MSC co-culture increased oxygen consumption by AML, induced generation of mitochondrial ROS (control 4.4% vs IACS 44.4%), increased mtDNA (2-fold by q-PCR) and upregulation of mitochondrial proteins VDAC and cytochrome C, translating into dampened growth-inhibitory effects of IACS-010759. We further demonstrated that OCI-AML3 cells adhering to MSCs were fully protected from IACS-010759 induced apoptosis (IACS-induced specific apoptosis: non-adherent cells 16.2% ± 1.6% vs adherent cells 1.6% ± 0.7%, p=0.008, 30nM, 72hours). Similarly, adherent cells were fully protected from apoptosis induced by combination of IACS and AraC. These findings indicate that direct interactions with MSC trigger compensatory activation of mitochondrial respiration, increase in mitochondrial mass and resistance to OxPhos inhibition in AML. We next hypothesized that the trafficking of mitochondria from BM stroma cells to AML cells could represent a putative mechanism of an acquired resistance to OxPhos inhibition. To visualize mitochondria, OCI-AML3 and MSC were stably transfected with mitochondria-targeted PDHA1-GFP and -dsRed, respectively. We discovered that IACS-010759 induced transfer of MSC-derived mitochondria to OCI-AML3 cells (% of GFP/dsRed double-positive OCI-AML, control 4.1 ± 1.7 vs IACS 26.2 ± 13.4, p=0.002) via tunneling nanotubes (TNTs) detected by confocal and electron microscopy (Fig.1). Mitochondria transfer was only observed in the direct contact but not in the transwell co-cultures, and was abrogated by ICAM-1 neutralizing antibody and TNT blockade with Cytochalasin B. Likewise, combination of IACS with AraC increased mitochondrial transfer. We further found that IACS-010759 induced autophagy in OCI-AML3 cells co-cultured with MSC, as noted by increased conversion of LC3-I to LC3-II, which was further enhanced by the lysosome inhibitor Bafilomycin. Additionally, we observed autophagosome formation enwrapping MSC-derived mitochondria (Fig.1F), along with the degradation of an outer mitochondrial membrane protein Tom20. Finally, IACS-010759-induced transfer of mtDNA in BM-resident AML cells was confirmed in vivo in humanized AML PDX models (n=2). Daily oral treatment of mice harboring human AML with IACS-010759 (5.0 mg/kg/day, 21 days) increased the ratio of murine/human mtDNA in human AML cells isolated from BM, in 5 days on/2 days off PDX models tested (2.1 ± 0.3 fold, n=2). In conclusion, the findings of this study indicate an important role of mitochondria trafficking from BM stromal cells to AML cells in a compensatory adaptation to OxPhos inhibition in BM microenvironment. We propose that blocking of mitochondrial transfer could enhance the anti-AML efficacy of OxPhos targeting agents. Disclosures Zhang: The University of Texas M.D.Anderson Cancer Center: Employment. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Reata: Equity Ownership; Aptose: Equity Ownership; 6 Dimensions Capital: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy; Amgen: Consultancy; AstaZeneca: Consultancy; CPRIT: Research Funding; NIH/NCI: Research Funding; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees. Konopleva:Astra Zeneca: Research Funding; Agios: Research Funding; Eli Lilly: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Amgen: Consultancy, Honoraria; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Genentech: Honoraria, Research Funding; Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Forty-Seven: Consultancy, Honoraria; Calithera: Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3927-3927
    Abstract: Previous studies have demonstrated that AML is BCL-2 dependent malignancy, and leukemia stem cell (LSC) rely on BCL-2 for survival (Pan, Cancer Discovery 2014;Lagadinou, Cell Stem Cell, 2013). Selective Bcl-2 inhibitor venetoclax (ABT-199) combined with azacitidine was reported to inhibit complex II of the mitochondrial transport chain in AML (Pollyea, Nat Med 2018). IACS-010759, a novel complex I inhibitor, demonstrated effective inhibition of cell respiration and potent anti-leukemia effect in AML pre-clinical models (Molina, Nat Med 2018). We designed the experiments to study the combined efficacy and mechanisms of action of venetoclax and IACS-010759 in AML. In vitro, priming of MOLM-13 cells with 20nM venetoclax for 24hrs followed by 10nM IACS-010759 for 1hr triggered 60% reduction in oxygen consumption rate (OCR), while only partial inhibition ( 〈 15% OCR reduction) was seen in cells treated with these agents separately. This translated in accelerated loss of the mitochondrial membrane potential by JC-1 flow cytometry, cleavage of caspase 3 and potent ( 〉 70%) reduction of viable cell numbers (OCI-AML2, MV-4-11, and MOLM-13). We have further shown by co-immunoprecipitation studies that venetoclax disrupts interaction of BCL-2 with the mitochondrial protein VDAC known to regulate ADP/ATP exchange during electron transport across mitochondria membrane. In addition, an MS-based metabolomics analysis indicated that ATP and CTP intracellular levels dropped to undetectable levels following treatment with ABT-199 (with or without IACS). ADP, GDP and UDP levels were unchanged with ABT-199; however, GDP levels dropped to undetectable levels following the combined treatment. Moreover, ABT-199 significantly increased intracellular levels of AMP, UMP, CMP and GMP and this accumulation of mono-nucleotides was enhanced by the combination of ABT-199 and IACS-010759. In primary AML samples (n=3) and PDX cells (n=4) cultured ex vivo, combined venetoclax and IACS-010759 at low nanomolar doses reduced viable cell numbers in an additive or synergistic fashion. To better understand the role of BCL-2 in cellular respiration, we examined the oxygen consumption rates (OCR) in control or Bcl-2-overexpressing HL-60 cells (a kind gift of Dr. K. Bhalla, MDACC). The HL-60/BCL-2 cells had higher basal and maximal OCR than the control cells by Seahorse analysis, and higher mitochondrial ROS production by H2DCFDA and MitoSOX Red flow cytometry. BCL-2 inhibition with 100nM venetoclax for 2 hrs induced ROS production in control HL-60 cells but not in cells with BCL-2 overexpression. Further, cells with BCL-2 overexpression were less sensitive to IACS-010759. These data suggest that BCL-2 facilitates cellular respiration and reduces efficacy of the mitochondrial inhibitors. Given recent accelerated FDA approval of venetoclax and azacitidine combination for elderly unfit AML, we next tested the efficacy of the "triple" combination of venetoclax, azacitidine and IACS-010759 in the in vivoAML PDX model. We injected AML PDX cells 3747422 harboring IDH1, NMP1, NRAS, CEBPA, FLT3-ITD mutations into NRG mice and upon engraftment, randomized mice into 4 groups to receive vehicle, venetoclax (50mg/kg, 5 days on/2 days off, day 1-21) with azacitidine (1.25mg/kg daily , day 1-7), IACS-010759 (1mg/kg, 5 days on/2 days off, day 1-14), or the triple combination. Therapy was well tolerated, without any apparent weight loss or toxicities. All therapies reduced circulating leukemia burden with the best efficacy seen in the triple-therapy cohort, with average circulating tumor burden of 31.2%, 6.9%, 5.1% and 0.4% in vehicle, IACS-010759, venetoclax/azacitidine and triple-therapy cohorts, respectively. Survival analysis and additional PDX models are ongoing and will be reported. In summary, these findings indicate that BCL-2 modulates mitochondrial respiration in addition to its established anti-apoptotic role. Venetoclax disrupts the BCL-2/VDAC interactions and reduces mitochondrial respiration, which is facilitated by the combined therapy with mitochondrial complex I inhibitor IACS-010759. Our preliminary findings indicate potent anti-AML activity of the dual and triple (with hypomethylating agent) combinations in vitroand in vivo. Disclosures Zhang: The University of Texas M.D.Anderson Cancer Center: Employment. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Konopleva:Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Forty-Seven: Consultancy, Honoraria; Eli Lilly: Research Funding; Calithera: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Amgen: Consultancy, Honoraria; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Genentech: Honoraria, Research Funding; Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Astra Zeneca: Research Funding; Agios: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 4020-4020
    Abstract: Adult T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by limited therapeutic options and a high rate of treatment failure due to chemoresistance. T-ALL is largely driven by activating NOTCH1 mutations, where oncogenic NOTCH1 facilitates glutamine oxidation, induces metabolic stress, and facilitates reliance on oxidative phosphorylation (OXPHOS)1. In other malignancies, the shift toward OXPHOS-dependent high-energy status is associated with acquired chemoresistance. In this study, we found that the novel inhibitor of mitochondrial complex I (OXPHOSi) IACS-0107592 has preclinical activity in NOTCH1-mutated T-ALL; we also characterize the cellular and metabolic responses to OXPHOS inhibition and propose that an OXPHOSi be incorporated into standard-of-care therapy to improve outcomes in patients harboring NOTCH1-mutated T-ALL. Exposure to IACS-010759 (0-370 nM) in vitro drastically reduced T-ALL viability, with EC50 ranging from 0.1-10 nM for cell lines (n=7) and from 13-60 nM for patient-derived xenograft (PDX)-derived and primary T-ALL cells (n=10) (Fig.1). Oral administration of IACS-010759 (7.5 mg/kg/day) significantly reduced leukemia burden and extended overall survival (p 〈 0.0001) in two aggressive NOTCH1-mutated T-ALL PDX models and in a murine NOTCH1-driven T-ALL model (Fig.4). Addition of OXPHOS inhibitor to dexamethasone (X), vincristine (V), asparaginase (L), or a combination (VXL) led to additive/synergistic inhibition of cell proliferation in vitro and to doubling of overall survival in vivo (p 〈 0.0001) (Fig.4). Metabolic characterization confirmed that IACS-010759 caused striking dose-dependent decreases in basal and maximal oxygen consumption rates (OCR) and ATP and NADH production in T-ALL cell lines and primary T-ALL samples (p 〈 0.001; Fig.2). Further, pretreatment with V, X, or L shifted T-ALL cell metabolism toward OXPHOS, increasing significantly the OCR that was effectively inhibited by IACS-010759. Pharmacological inhibition of complex I with IACS-010759, similar to knockout of complex I subunit NDUFS4 using CRISPR-CAS9, induced catastrophic changes in mitochondria, with induction of mitochondrial reactive oxygen species (ROS), DNA damage, and activation of the compensatory mTOR pathway. OXPHOS inhibition altered cellular energy homeostasis through reduction of TCA cycle intermediates; decreased glutathione level (by UPLC-MS/MS; p 〈 0.0001) with ROS induction (Fig.3); and depleted the pool of intracellular nucleotides, affecting DNA and RNA synthesis (Fig.2C). Stable isotope-resolved metabolomics (SIRM) flux analysis showed that IACS-010759 (30 nM at 24 h) significantly decreased the flux of glucose through the TCA cycle and redirected it toward lactate production and increased utilization of glutamine for fueling the TCA cycle, in particular through reductive metabolism, uncovering reliance on glutaminolysis as an additional therapeutic target. Consistent with this was the finding that combined OXPHOSi with glutaminase inhibitor CB-839 caused additive reduction of viability of T-ALL cells lines and primary T-ALL cells in vitro (Fig.2), decreased tumor burden (p 〈 0.02), and increased survival in a T-ALL PDX model (p 〈 0.01). This was supported by IACS-induced reduction of tumor burden in a NOTCH1-mutated GLS fl/fl murine model upon tamoxifen-induced GLS knockout (p 〈 0.01). In summary, our findings indicate that OXPHOSi, alone and particularly in combination with standard chemotherapy and GLS inhibition, constitutes a novel therapeutic modality that targets a unique metabolic vulnerability of NOTCH1-mutated T-ALL cells. References:Kishton RJ, Barnes CE, Nichols AG at al., AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival, Cell Metabolism, 2016, 23(4):649-62Molina JR, Sun Y, Protopopova M et al., An inhibitor of oxidative phosphorylation exploits cancer vulnerability, Nat Med, 2018, 24: 1036-1046 Disclosures Lorenzi: NIH: Patents & Royalties; Erytech Pharma: Consultancy. Konopleva:Stemline Therapeutics: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3870-3870
    Abstract: T-ALL is an aggressive hematologic malignancy arising from immature T-cell precursors. Previous studies identified dependence of T-ALL (with a notable exception of early T-cell precursor (ETP) ALL) on BCL-XL (Chonghaile, Cancer Discovery 2014; Khaw, Blood 2016). However, BCL-XL specific inhibitors exhibit on-target toxicity of thrombocytopenia, restricting the use in acute leukemias (Vogler, Blood 2011). DT2216, a novel BCL-XL specific proteolysis targeting chimera (PROTAC), targets BCL-XL to the Von Hippel-Lindau (VHL) E3 ligase, leading to BCL-XL ubiquitination and degradation selectively in cells express VHL (Khan, ASH 2018). Platelets lack VHL expression and therefore are spared from destruction by DT2216. Here we studied the pre-clinical efficacy of DT2216 in T-ALL cell lines in vitroand in vivousing T-ALL patient-derived xenograft (PDX) models. We first analyzed anti-apoptotic proteins (BCL-XL, BCL-2, MCL-1) expression in 4 B-ALL (LAZX2, MUTZ5, RS4:11, BALL1) and 6 T-ALL cell lines (SUPT1, KOPT1, Loucy, CCRF-CEM, PF384, Jurkat) by immunoblotting. This analysis demonstrated that ALL cell lines generally co-express BCL-XL and BCL-2 (Figure 1A). To identify functional dependencies, we utilized BH3 profiling that measures cytochrome C release after priming cells with BH3 peptides selectively targeting pro-survival BCL-2 family proteins in 4 B-ALL and 3 T-ALL cell lines. Similarly, cells were co-dependent on several anti-apoptotic members as shown by higher cytochrome c release in response to BIM, BID and BMF peptides targeting multiple anti-apoptotic proteins, and lower response to FS-1, ABT-199, HRK, MS-1, targeting individual anti-apoptotic members (Figure 1B). Analysis of the 3 B-ALL and 3 T-ALL PDX lines identified similar patterns that ALL cells are co-dependent on several anti-apoptotic members. Notably, we observed high cytochrome C release in response to mBAD that targets BCL-2 and BCL-XL; in addition, two of the three T-ALL PDXs, but none B-ALL PDX, responded to BCL-XL specific peptide HRK and to DT2216 confirming a functional role of BCL-XL in T-ALL survival. Next, we studied the sensitivity of ALL cells to ABT-199, DT2216 and the combination, in comparison with dual BCL-2/BCL-XL inhibitor ABT-263. DT2216 treatment (24hrs) caused a dose-dependent reduction of cellular viability in all 6 T -ALL and 3 B-ALL lines (except for BALL1 with complex karyotype refractory to all agents) measured by Cell TiterGlo assay, with T-ALL cells demonstrating a log higher sensitivity compared to B-ALL. In contrast, 5 out of 6 T-ALL lines (all besides ETP line Loucy) had no response to ABT-199, while 3 B-ALL lines showed dose-dependent response. All lines except BALL1 responded to ABT-263 (Figure 1C). Notably, the combination of DT2216 with ABT-199 synergistically reduced cell viability, with average CI of 0.3 (range 0.1-0.7 in all lines besides BALL1) (Figure 1D). Immunoblotting of DT2216 treated cells confirmed dose-dependent, on-target BCL-XL degradation as early as 6 hrs (Figure 1E). We next tested the therapeutic efficacy of DT2216 alone or combined with chemotherapy in T-ALL PDX models. NSG mice were engrafted with T-ALL PDX CU76 and D115. After documenting bone marrow (BM) engraftment by flow cytometry in BM aspirates on Day 14 post cell injection, mice were randomized to receive vehicle, chemotherapy ("VDL", VCR 0.15mg/kg, Dexa 5mg/kg, L-ASP 1000U/kg, ip., qw), DT2216 (15mg/kg, ip., q4d) or their combination for 3 weeks. Mice tolerated DT2216 therapy well, with no platelet toxicity by whole blood count 24hrs post the first and last DT2216 dosing. DT2216 reduced leukemia burden, delayed leukemia progression (Fig 1G) and significantly extended mice survival in both models. VDL chemotherapy had no effect on ALL progression in CU76 model and showed efficacy similar to DT2216 in D115 model; of importance, VDL+ DT2216 combination resulted in significant extension of survival in both chemoresistant and chemosensitive models (Figure 1F). In summary, T-ALL cells are functionally dependent on BCL-XL for survival and are highly sensitive to DT2216, while B-ALL are largely BCL-2 dependent and respond to BCL-2 inhibitors such as ABT-199. DT2216 alone and in particular when combined with chemotherapy reduced leukemia burden and prolonged survival in T-ALL PDX models. This study suggests targeting BCL-XL by DT2216 represents highly effective and safe adjunct therapeutic modality in T-ALL. Disclosures Zhang: The University of Texas M.D.Anderson Cancer Center: Employment. Zhang:University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer agents. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Ghotbaldini:CPRIT Research Grant: Research Funding. Zheng:Dialectic Therapeutics: Equity Ownership, Other: Co-founders of Dialectic Therapeutics that develops Bcl-xl PROTACs as anti-cancer agents; University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer and anti-aging agents. Zhou:University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer and anti-aging agents; Unity Biotechnology: Equity Ownership, Other: Co-founder of Unity Biotechnology which develops small-molecule senolytic drugs; Dialectic Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: co-founders of Dialectic Therapeutics that develops Bcl-xl PROTACs as anti-cancer agents. Konopleva:Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Eli Lilly: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Genentech: Honoraria, Research Funding; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Forty-Seven: Consultancy, Honoraria; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Calithera: Research Funding; Astra Zeneca: Research Funding; Agios: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 5161-5161
    Abstract: Acute myeloid leukemia (AML) is initiated and maintained by a relatively rare leukemia stem cells (LSCs) capable of self-renewal and proliferation. Recent data showed that LSCs (Lagadinou et al. Cell Stem Cell 2013) and residual cytarabine (Ara-C)-resistant AML cells (representing minimal residual disease, MRD) (Farge et al. Cancer Discovery 2017) are highly dependent on mitochondrial function for survival. This unique metabolic biology makes chemoresistant LSCs and AML cells vulnerable to pharmacological blockade of the oxidative phosphorylation (OXPHOS). We have reported that a novel OXPHOS inhibitor IACS-010759 potently inhibits mitochondrial complex I, suppresses OXPHOS and selectively inhibits the growth of AML cells in vitro and in vivo (Molina et al. Nat Med 2018). In this study, we aimed to determine the effects of OXPHOS inhibition with IACS-010759 on residual AML cells surviving standard chemotherapy (Doxorubicin/Ara-C, DA) in cell line and patient-derived xenograft (PDX) AML models. Consistent with our hypothesis, OCI-AML3 cells treated with DA in vitro induced elevated levels of reactive oxygen species, higher mitochondrial mass and membrane potential (Fig. 1A), indicating reliance on the mitochondrial metabolism. Further, Ara-C treatment resulted in significantly increased basal and maximal oxygen consumption rates (OCR) (36%±8%, p=0.03; 36%±3%, p=0.003, respectively) compared to control. In turn, targeting OXPHOS with IACS-010759 at 30 nM fully inhibited basal and Ara-C-induced OCR. These findings indicate that chemotherapy fosters mitochondrial respiration in AML, which could be abrogated by OXPHOS inhibitor. To test the efficacy of combining IACS-010759 (5 mg/kg) and standard chemotherapy (Doxorubicin: 1.5 mg/kg; Ara-C: 50 mg/kg) in vivo, we injected NRG mice with genetically engineered OCI-AML3/Luc/GFP cells. Bioluminescent imaging demonstrated significantly reduced leukemia burden in DA/IACS-010759 combination group compared to vehicle on days 15 and 42 (p 〈 0.01) (Fig. 1B). DA/IACS-010759 combination significantly extended survival, compared to the vehicle or single-agent treatment arms (Fig. 1C). Mouse body weight monitoring indicated that therapy was well tolerated We next examined the efficacy of IACS-010759 on leukemia cells surviving chemotherapy in a chemosensitive PDX AML model of minimal residual disease (Fig. 1D). Treatment of mice inoculated with a human AML PDX harboring FLT3-ITD mutation with DA reduced circulating leukemia burden (0.8 ± 0.6% vs 45.8 ± 8.2% blasts in vehicle-treated mice, p=0.001). The residual AML cells in DA-treated mice expanded and caused rapidly progressive leukemia (78.2 ± 6.2% vs 95.3 ± 1.0% in vehicle-treated mice, p=0.047) on week 6 post DA. Daily oral treatment of mice with IACS-010759 (7.5 mg/kg) as a single agent reduced leukemia burden, and delayed leukemia recurrence when administered post completion of DA (Fig. 1E). A SPADE tree was built based on 13 surface markers and colored by expression intensity of CD34 using CyTOF mass cytometry data (Fig. 1F). The data demonstrated reduced frequency of CD34+CD38lowCD123+ AML LSCs and increase in CD11c+ differentiated cells in both IACS and IACS/DA groups (Fig. 1G & H). In contrast, chemotherapy alone failed to significantly reduce fractions of LSCs or induce differentiation. Proliferation measured by Ki67 was greatly reduced by IACS/DA combination in all populations including LSCs (1.4 ± 0.3% vs 5.5 ± 0.4% in vehicle group, p 〈 0.01). The expression of Hypoxia-Inducible Factor 1α (HIF-1α) was downregulated, consistent with the decreased oxygen consumption induced by IACS-010759 (not shown). In conclusion, minimal residual AML cells surviving chemotherapy depend on OXPHOS for survival. OXPHOS inhibition with complex I inhibitor IACS-010759 is effective in reducing LSCs and MRD, alone and in combination with chemotherapy in vivo. Our data advocate for combining IACS-010759 with chemotherapy for improved control of MRD upon identification of a recommended Phase II dose in a clinical trial of IACS-010759 in AML (NCT02882321). Disclosures Zhang: The University of Texas M.D.Anderson Cancer Center: Employment. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Kantarjian:Pfizer: Honoraria, Research Funding; Cyclacel: Research Funding; AbbVie: Honoraria, Research Funding; Daiichi-Sankyo: Research Funding; Immunogen: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria; Ariad: Research Funding; Novartis: Research Funding; Agios: Honoraria, Research Funding; BMS: Research Funding; Astex: Research Funding; Amgen: Honoraria, Research Funding; Jazz Pharma: Research Funding. Daver:Jazz: Consultancy; Hanmi Pharm Co., Ltd.: Research Funding; Agios: Consultancy; Immunogen: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Celgene: Consultancy; Karyopharm: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Sunesis: Consultancy, Research Funding; Forty-Seven: Consultancy; Novartis: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Astellas: Consultancy; Servier: Research Funding; NOHLA: Research Funding; Glycomimetics: Research Funding; Otsuka: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy; Amgen: Consultancy. Konopleva:Calithera: Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Forty-Seven: Consultancy, Honoraria; Eli Lilly: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Amgen: Consultancy, Honoraria; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Genentech: Honoraria, Research Funding; Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Astra Zeneca: Research Funding; Agios: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood Advances, American Society of Hematology, Vol. 5, No. 20 ( 2021-10-26), p. 4233-4255
    Abstract: Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages