Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4697-4697
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4697-4697
    Abstract: The chromatin remodeling SWI/SNF complex is mutated in 20% of all cancers and ARID1A is the most frequently mutated subunit. However, the tumor suppressive functions of ARID1A are not fully understood and no feasible therapeutic strategies are available for ARID1A-mutant cancers. Recent studies found that loss of ARID1A is associated with increased phosphorylation of AKT. We found that from a study that analyzed data from Project Achilles, a broad shRNA screening project, PIK3CA is the number 2 gene essential for survival of ARID1A-mutant cell lines compared to ARID1A-wildtype cell lines (P = 7.37 × 10-6, FDR & lt; 0.001). Based on these findings, we hypothesized that the PI3K pathway is a potential therapeutic target in ARID1A-mutant cancers. We analyzed the Cancer Genome Atlas (TCGA) datasets and found that mutations in the PI3K pathway co-occur with ARID1A mutations. In addition, the number of co-existing PI3K pathway mutations in the same sample is higher when ARID1A is mutated. We knocked down PIK3CA in ARID1A-wildtype cells (RMG1 and OVCAR3) and ARID1A-mutant cells (OVAS and HCH-1). We found that proliferation was impaired more profoundly in ARID1A-mutant cells. Interestingly, HCH-1 cells are wildtype in PIK3CA, PTEN, PIK3R1 and KRAS, but are still sensitive to PIK3CA depletion. For an unbiased approach, we analyzed the Genomics of Drug Sensitivity in Cancer datasets, which contain drug responses of a large cancer cell line panel to 138 anti-cancer drugs. We compared the drug responses of 49 cell lines harboring inactivating ARID1A-mutations with 266 ARID1A-wildtype cell lines. We found that the presence of inactivating ARID1A mutations is highly associated with sensitivity to mTOR inhibitor AZD8055 (ranked 2nd, P = 2.00 × 10-3) and AKT inhibitor MK2206 (ranked 4th, P = 7.98 × 10-3). This association is still significant for MK2206 when we removed cell lines with PIK3CA, KRAS, PTEN, PIK3R1 and TSC1 alterations (P = 1.32 × 10-2). Finally, we investigated how ARID1A loss can directly increase PI3K/mTOR activity. Using microarray analysis, we found that knockdown of ARID1A up-regulated MYC and MYC target genes, including SLC7A5, an amino-acid transporter required for mTOR activation. Analysis of TCGA datasets showed that MYC amplification and ARID1A mutations are mutual exclusive events, suggesting that overexpression of MYC and loss of ARID1A may converge on the same pathway. In conclusion, we found that ARID1A-mutant cells are highly sensitive to PI3K/mTOR inhibition. Although ARID1A mutations frequently co-occur with PI3K pathway mutations, it is not the sole explanation of this specific sensitivity. ARID1A loss may increase mTOR signaling through MYC target gene SLC7A5. However, increase in PI3K/mTOR activity maybe a long term effect of ARID1A loss. Together, our data identified PI3K/mTOR signaling is essential for survival of ARID1A-mutant cancers and PI3K/mTOR inhibitors can be used as therapeutic strategies. Citation Format: Suet-Yan Kwan, Daisy I. Izaguirre, Xuanjin Cheng, Suet-Ying Kwan, Yvonne TM Tsang, Hoi-Shan Kwan, Kwong-Kwok Wong. The PI3K/mTOR pathway is a potential therapeutic target in cancers with ARID1A mutations. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4697. doi:10.1158/1538-7445.AM2015-4697
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 11_Supplement ( 2017-06-01), p. NTOC-114-NTOC-114
    Abstract: Inactivating mutations in AT-rich interaction domain 1A (ARID1A) are most frequently found in ovarian clear cell carcinomas (OCCC) and ovarian endometrioid carcinomas (OEC). The functional roles of ARID1A are not completely understood and there are limited therapeutic strategies that specifically target ARID1A-mutant cancers. Given that ARID1A expression is lost in cancer, ARID1A mutations cannot be targeted directly and novel therapeutic strategies are required to target ARID1A-mutant cancers. In this study, drug responses between ARID1A-wildtype and ARID1A-mutant cell lines were compared using the ‘Genomics of Drug Sensitivities in Cancer’ database. From this analysis, we found that ARID1A-mutant cell lines are more sensitive to elesclomol, which is a reactive oxygen species (ROS)-inducing agent. This finding was validated using a panel of well-characterized ovarian and endometrial cancer cell lines. ARID1A-mutant OCCC cell lines exhibited lower IC50 values and higher apoptotic rates when treated with elesclomol. Knockdown and re-expression of ARID1A in ovarian cancer cells showed that ARID1A is required to protect cancer cells from oxidative stress. In the absence of ARID1A, intracellular ROS levels were increased as determined by flow cytometry. Immunostaining of 4-hydroxy-2-nonenals (4-HNE), one of the products from lipid peroxidation induced by ROS, in OCCC patient samples indicated an up-regulation of oxidative stress in the tumor. We also found that ARID1A negatively regulates the expression of NRF2 which is the major regulator of the antioxidant response in the cell. Knockdown of NRF2 in ovarian cancer cell lines revealed that NRF2 expression may be preferentially required for protection from oxidative stress and cell proliferation in ARID1A-mutant cells. Analysis using The Cancer Genome Atlas (TCGA) UCEC dataset revealed that ARID1A-mutant tumor samples have higher expression of NRF2 and NRF2-target genes. In summary, this study revealed novel roles of ARID1A in protecting ovarian cancer cells against oxidative stress. In the absence of ARID1A, NRF2 is up-regulated and may be required to compensate for ARID1A deficiency. These findings suggest that ARID1A-mutant ovarian cancer cells may be targeted for treatment with ROS-inducing agents and NRF2 inhibitors. Citation Format: Suet-Yan Kwan, Xuanjin Cheng, Suet-Ying Kwan, Daisy I. Izaguirre, Yvonne T.M. Tsang, Jong-Sun Choi, Hoi-Shan Kwan, David M. Gershenson and Kwong-Kwok Wong. ARID1A DEFICIENCY IN OVARIAN CLEAR CELL CARCINOMAS UP–REGULATES OXIDATIVE STRESS AND SENSITIZES CELLS TO ROS–INDUCING AGENTS [abstract]. In: Proceedings of the 11th Biennial Ovarian Cancer Research Symposium; Sep 12-13, 2016; Seattle, WA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(11 Suppl):Abstract nr NTOC-114.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 35 ( 2016-08-30), p. 56933-56943
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-03-29)
    Abstract: Advanced ovarian cancer usually spreads to the visceral adipose tissue of the omentum. However, the omental stromal cell-derived molecular determinants that modulate ovarian cancer growth have not been characterized. Here, using next-generation sequencing technology, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and tissue lysates isolated from cancer-associated adipocytes (CAAs) and fibroblasts (CAFs) than in those from ovarian cancer cells. Functional studies reveal that miR21 is transferred from CAAs or CAFs to the cancer cells, where it suppresses ovarian cancer apoptosis and confers chemoresistance by binding to its direct novel target, APAF1. These data suggest that the malignant phenotype of metastatic ovarian cancer cells can be altered by miR21 delivered by exosomes derived from neighbouring stromal cells in the omental tumour microenvironment, and that inhibiting the transfer of stromal-derived miR21 is an alternative modality in the treatment of metastatic and recurrent ovarian cancer.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 31 ( 2015-10-13), p. 31702-31720
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 30, No. 9 ( 2021-09-01), p. 1643-1651
    Abstract: Hispanics in South Texas have high rates of hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Liver fibrosis severity is the strongest predictive factor of NAFLD progression to HCC. We examined the association between free fatty acids (FA) and advanced liver fibrosis or HCC in this population. Methods: We quantified 45 FAs in plasma of 116 subjects of the Cameron County Hispanic Cohort, 15 Hispanics with HCC, and 56 first/second-degree relatives of Hispanics with HCC. Liver fibrosis was assessed by FibroScan. Results: Advanced liver fibrosis was significantly associated with low expression of very long chain (VLC) saturated FAs (SFA), odd chain SFAs, and VLC n-3 polyunsaturated FAs [PUFA; AOR; 95% confidence interval (CI), 10.4 (3.7–29.6); P & lt; 0.001; 5.7 (2.2–15.2); P & lt; 0.001; and 3.7 (1.5–9.3); P = 0.005]. VLC n3-PUFAs significantly improved the performance of the noninvasive markers for advanced fibrosis - APRI, FIB-4, and NFS. Plasma concentrations of VLC SFAs and VLC n-3 PUFAs were further reduced in patients with HCC. Low concentrations of these FAs were also observed in relatives of patients with HCC and in subjects with the PNPLA3 rs738409 homozygous genotype. Conclusions: Low plasma concentrations of VLC n-3 PUFAs and VLC SFAs were strongly associated with advanced liver fibrosis and HCC in this population. Genetic factors were associated with low concentrations of these FAs as well. Impact: These results have implications in identifying those at risk for liver fibrosis progression to HCC and in screening this population for advanced fibrosis. They also prompt the evaluation of VLC n-3 PUFA or VLC SFA supplementation to prevent cirrhosis and HCC.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2020
    In:  Hepatology Communications Vol. 4, No. 4 ( 2020-04), p. 555-568
    In: Hepatology Communications, Ovid Technologies (Wolters Kluwer Health), Vol. 4, No. 4 ( 2020-04), p. 555-568
    Abstract: Biomarkers to predict risk of liver fibrosis in subjects with nonalcoholic fatty liver disease, a common risk factor for hepatocellular carcinoma, would allow for early preventive interventions. We sought to characterize bile acid profiles associated with liver fibrosis in subjects from the community‐based Cameron County Hispanic Cohort, a population in South Texas with high rates of nonalcoholic fatty liver disease, liver fibrosis and hepatocellular carcinoma. Plasma bile acid levels were measured in 390 subjects. These subjects were screened with liver elastography, detecting significant liver fibrosis in 58 subjects and steatosis in 186 subjects. Unsupervised clustering of the bile acid profiles revealed five clusters that differed by liver fibrosis, liver steatosis, liver injury, age and gender, identifying these parameters as major determinants of circulating bile acid changes. Total bile acid levels were significantly higher in subjects with fibrosis, with chenodeoxycholic acid displaying the greatest increase among individual bile acids. The primary conjugated bile acids, glycocholic and glycochenodeoxycholic acids, displayed the strongest association with fibrosis by logistic regression. High lithocholic acid levels were strongly associated with advanced fibrosis. In contrast, deoxycholic acid and total unconjugated secondary bile acids were positively associated with steatosis, whereas relative glycoursodeoxycholic acid abundance was negatively associated. Milk and yogurt intake notably contributed to fibrosis‐associated bile acid changes. In addition, multiple families within the Firmicutes phylum, Prevotellaceae, and Bacteroides species in stool significantly correlated with fibrosis‐associated and steatosis‐associated bile acid parameters, suggesting that the gut microbiome contributes to bile acid changes in the context of liver disease. Conclusion: Circulating bile acid levels were markedly but differently changed in liver fibrosis and steatosis in a high‐risk Mexican‐American population.
    Type of Medium: Online Resource
    ISSN: 2471-254X , 2471-254X
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2881134-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-07-15)
    Abstract: Advanced ovarian cancer usually spreads to the omentum. However, the omental cell-derived molecular determinants modulating its progression have not been thoroughly characterized. Here, we show that circulating ITLN1 has prognostic significance in patients with advanced ovarian cancer. Further studies demonstrate that ITLN1 suppresses lactotransferrin’s effect on ovarian cancer cell invasion potential and proliferation by decreasing MMP1 expression and inducing a metabolic shift in metastatic ovarian cancer cells. Additionally, ovarian cancer-bearing mice treated with ITLN1 demonstrate marked decrease in tumor growth rates. These data suggest that downregulation of mesothelial cell-derived ITLN1 in the omental tumor microenvironment facilitates ovarian cancer progression.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Experimental & Clinical Cancer Research, Springer Science and Business Media LLC, Vol. 41, No. 1 ( 2022-08-11)
    Abstract: Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker ryanodine receptor 1 (RYR1) identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival or disease stage, and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of RYR1 in the tumors is associated with advanced stage of the disease. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through Ca 2+ -dependent activation of AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression and survival in mouse models. Conclusions These findings provided insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival.
    Type of Medium: Online Resource
    ISSN: 1756-9966
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2430698-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancers, MDPI AG, Vol. 12, No. 9 ( 2020-08-27), p. 2436-
    Abstract: Uterine serous cancer (USC) is an aggressive subtype of endometrial cancer, with poor survival and high recurrence rates. The development of novel and effective therapies specific to USC would aid in its management. However, few studies have focused solely on this rare subtype. The current study demonstrated that the orally bioavailable, investigational new drug and novel imipridone ONC206 suppressed USC cell proliferation and induced apoptosis both in vitro and in vivo. Disruption of the DRD2-mediated p38MAPK/ERK/PGC-1α network by ONC206 led to metabolic reprogramming and suppression of both glycolysis and oxidative phosphorylation. ONC206 also synergized with paclitaxel in reducing USC cell viability. In addition, DRD2 overexpression correlated with poor overall survival in patients. This study provides the first evidence that ONC206 induced metabolic reprogramming in USC cells and is a promising therapeutic agent for USC treatment. These findings support further development of ONC206 as a promising therapeutic agent and improves survival rates in patients with USC.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages