In:
Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 2 ( 2021-03-22), p. 2073-2084
Abstract:
The development of deep sequencing technologies has led to the discovery of novel transcripts. Many in silico methods have been developed to assess the coding potential of these transcripts to further investigate their functions. Existing methods perform well on distinguishing majority long noncoding RNAs (lncRNAs) and coding RNAs (mRNAs) but poorly on RNAs with small open reading frames (sORFs). Here, we present DeepCPP (deep neural network for coding potential prediction), a deep learning method for RNA coding potential prediction. Extensive evaluations on four previous datasets and six new datasets constructed in different species show that DeepCPP outperforms other state-of-the-art methods, especially on sORF type data, which overcomes the bottleneck of sORF mRNA identification by improving more than 4.31, 37.24 and 5.89% on its accuracy for newly discovered human, vertebrate and insect data, respectively. Additionally, we also revealed that discontinuous k-mer, and our newly proposed nucleotide bias and minimal distribution similarity feature selection method play crucial roles in this classification problem. Taken together, DeepCPP is an effective method for RNA coding potential prediction.
Type of Medium:
Online Resource
ISSN:
1467-5463
,
1477-4054
Language:
English
Publisher:
Oxford University Press (OUP)
Publication Date:
2021
detail.hit.zdb_id:
2036055-1
SSG:
12
Bookmarklink