Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 506, No. 3 ( 2021-07-29), p. 3810-3830
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 506, No. 3 ( 2021-07-29), p. 3810-3830
    Abstract: We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work, we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain by combining multiple transits together. We reached the highest precision on the transit time of about 13–16 s for the brightest target (WASP-38, G = 9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G ≥ 11, we obtained a timing precision of ∼2 min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 666 ( 2022-10), p. A183-
    Abstract: We report the discovery and characterization of the transiting extrasolar planet TOI-1710 b. It was first identified as a promising candidate by the Transiting Exoplanet Survey Satellite. Its planetary nature was then established with SOPHIE and HARPS-N spectroscopic observations via the radial-velocity method. The stellar parameters for the host star are derived from the spectra and a joint Markov chain Monte-Carlo adjustment of the spectral energy distribution and evolutionary tracks of TOI-1710. A joint MCMC analysis of the TESS light curve and the radial-velocity evolution allows us to determine the planetary system properties. From our analysis, TOI-1710 b is found to be a massive warm super-Neptune ( M p = 28.3 ± 4.7 M ⊕ and R p = 5.34 ± 0.11 R ⊕ ) orbiting a G5V dwarf star ( T eff = 5665 ± 55 K) on a nearly circular 24.3-day orbit ( e = 0.16 ± 0.08). The orbital period of this planet is close to the estimated rotation period of its host star P rot = 22.5 ± 2.0 days and it has a low Keplerian semi-amplitude K = 6.4 ± 1.0 m s −1 ; we thus performed additional analyses to show the robustness of the retrieved planetary parameters. With a low bulk density of 1.03 ± 0.23 g cm −3 and orbiting a bright host star ( J = 8.3, V = 9.6), TOI-1710 b is one of the best targets in this mass-radius range (near the Neptunian desert) for atmospheric characterization via transmission spectroscopy, a key measurement in constraining planet formation and evolutionary models of sub-Jovian planets.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 511, No. 3 ( 2022-02-26), p. 4551-4571
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 511, No. 3 ( 2022-02-26), p. 4551-4571
    Abstract: We present a precise characterization of the TOI-561 planetary system obtained by combining previously published data with TESS and CHEOPS photometry, and a new set of 62 HARPS-N radial velocities (RVs). Our joint analysis confirms the presence of four transiting planets, namely TOI-561 b (P = 0.45 d, R = 1.42 R⊕, M = 2.0 M⊕), c (P = 10.78 d, R = 2.91 R⊕, M = 5.4 M⊕), d (P = 25.7 d, R = 2.82 R⊕, M = 13.2 M⊕), and e (P = 77 d, R = 2.55 R⊕, M = 12.6 R⊕). Moreover, we identify an additional, long-period signal ( & gt;450 d) in the RVs, which could be due to either an external planetary companion or to stellar magnetic activity. The precise masses and radii obtained for the four planets allowed us to conduct interior structure and atmospheric escape modelling. TOI-561 b is confirmed to be the lowest density (ρb = 3.8 ± 0.5 g cm−3) ultra-short period (USP) planet known to date, and the low metallicity of the host star makes it consistent with the general bulk density-stellar metallicity trend. According to our interior structure modelling, planet b has basically no gas envelope, and it could host a certain amount of water. In contrast, TOI-561 c, d, and e likely retained an H/He envelope, in addition to a possibly large water layer. The inferred planetary compositions suggest different atmospheric evolutionary paths, with planets b and c having experienced significant gas loss, and planets d and e showing an atmospheric content consistent with the original one. The uniqueness of the USP planet, the presence of the long-period planet TOI-561 e, and the complex architecture make this system an appealing target for follow-up studies.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 654 ( 2021-10), p. A159-
    Abstract: AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995 ± 0.000003 d, whereas the stellar rotational period is P rot = 4.8367 ± 0.0006 d. The two periods indicate a 7:4 spin–orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3–4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 646 ( 2021-2), p. A157-
    Abstract: Context. The detection of a super-Earth and three mini-Neptunes transiting the bright ( V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R ⋆ = 0.877 ± 0.008 R ⊙ , M ⋆ = 0.869 −0.048 +0.050 M ⊙ , and an age of 6.7 −5.1 +4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539 −0.065 +0.062 , 3.083 ± 0.052, and 2.017 −0.057 +0.052 R ⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 501, No. 3 ( 2021-01-15), p. 4148-4166
    Abstract: Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterization of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period Pb = 0.45 d, mass Mb = 1.59 ± 0.36 M⊕ and radius Rb = 1.42 ± 0.07 R⊕, and three mini-Neptunes: TOI-561 c, with Pc = 10.78 d, Mc = 5.40 ± 0.98 M⊕, Rc = 2.88 ± 0.09 R⊕; TOI-561 d, with Pd = 25.6 d, Md = 11.9 ± 1.3 M⊕, Rd = 2.53 ± 0.13 R⊕; and TOI-561 e, with Pe = 77.2 d, Me = 16.0 ± 2.3 M⊕, Re = 2.67 ± 0.11 R⊕. Having a density of 3.0 ± 0.8 g cm−3, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 507, No. 2 ( 2021-08-27), p. 1847-1868
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 507, No. 2 ( 2021-08-27), p. 1847-1868
    Abstract: To date, only 18 exoplanets with radial velocity (RV) semi-amplitude & lt;2 m s−1 have had their masses directly constrained. The biggest obstacle to RV detection of such exoplanets is variability intrinsic to stars themselves, e.g. nuisance signals arising from surface magnetic activity such as rotating spots and plages, which can drown out or even mimic planetary RV signals. We use Kepler-37 – known to host three transiting planets, one of which, Kepler-37d, should be on the cusp of RV detectability with modern spectrographs – as a case study in disentangling planetary and stellar activity signals. We show how two different statistical techniques – one seeking to identify activity signals in stellar spectra, and another to model activity signals in extracted RVs and activity indicators – can each enable a detection of the hitherto elusive Kepler-37d. Moreover, we show that these two approaches can be complementary, and in combination, facilitate a definitive detection and precise characterization of Kepler-37d. Its RV semi-amplitude of 1.22 ± 0.31 m s−1 (mass 5.4 ± 1.4 M⊕) is formally consistent with TOI-178b’s $1.05^{+0.25}_{-0.30}$ m s−1, the latter being the smallest detected RV signal of any transiting planet to date, though dynamical simulations suggest Kepler-37d’s mass may be on the lower end of our 1σ credible interval. Its consequent density is consistent with either a water-world or that of a gaseous envelope ($\sim 0.4{{\ \rm per\ cent}}$ by mass) surrounding a rocky core. Based on RV modelling and a re-analysis of Kepler-37 TTVs, we also suggest that the putative (non-transiting) planet Kepler-37e should be stripped of its ‘confirmed’ status.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 511, No. 1 ( 2022-02-04), p. 1043-1071
    Abstract: We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 505, No. 3 ( 2021-06-23), p. 3767-3784
    Abstract: The knowledge of the ages of stars hosting exoplanets allows us to obtain an overview on the evolution of exoplanets and understand the mechanisms affecting their life. The measurement of the ages of stars in the Galaxy is usually affected by large uncertainties. An exception are the stellar clusters: For their coeval members, born from the same molecular cloud, ages can be measured with extreme accuracy. In this context, the project PATHOS is providing candidate exoplanets orbiting members of stellar clusters and associations through the analysis of high-precision light curves obtained with cutting-edge tools. In this work, we exploited the data collected during the second year of the Transiting Exoplanet Survey Satellite mission. We extracted, analysed, and modelled the light curves of $\sim 90\, 000$ stars in open clusters located in the Northern ecliptic hemisphere in order to find candidate exoplanets. We measured the frequencies of candidate exoplanets in open clusters for different orbital periods and planetary radii, taking into account the detection efficiency of our pipeline and the false positive probabilities of our candidates. We analysed the age–RP distribution of candidate and confirmed exoplanets with periods & lt;100 d and well constrained ages. While no peculiar trends are observed for Jupiter-size and (super-)Earth-size planets, we found that objects with $4 \lesssim R_{\rm P} \lesssim 13R_{\rm Earth}$ are concentrated at ages ≲200 Myr; different scenarios (atmospheric losses, migration, etc.) are considered to explain the observed age–RP distribution.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 498, No. 2 ( 2020-09-16), p. 1726-1749
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 498, No. 2 ( 2020-09-16), p. 1726-1749
    Abstract: In this work, we present the analysis of 976 814 FGKM dwarf and subgiant stars in the Transiting Exoplanet Survey Telescope (TESS) full frame images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multisector photometry from TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates’ radius distribution ranges between 1 R⊕ and 2.6 RJ with median value of 1 RJ and the period distribution ranges between 0.25 and 105 d with median value of 3.8 d. The sample contains four long period candidates (P & gt; 50 d), one of which is new, and 64 candidates with periods between 10 and 50 d (42 new ones). In the small planet radius domain (4R & lt; R⊕), we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multiplanetary system, and a novel candidate around a known TOI. By using Gaia dynamical constraints, we found that 70 objects show evidence of binarity. We release a catalogue of the objects we analysed and the corresponding light curves and diagnostic figures through the MAST and ExoFOP portals.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages