Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 501, No. 1 ( 2020-12-30), p. 1215-1227
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 501, No. 1 ( 2020-12-30), p. 1215-1227
    Abstract: Two meteorite pieces have been recovered in Italy, near the town of Cavezzo (Modena), on 2020 January 4th. The associated fireball was observed on the evening of New Year’s Day 2020 by eight all-sky cameras of the PRISMA fireball network, a partner of FRIPON. The computed trajectory had an inclination angle of approximately 68° and a velocity at infinity of 12.8 km s−1. Together with the relatively low terminal height, estimated as 21.5 km, those values were indicating the significant possibility of a meteorite dropping event, as additionally confirmed by the non-zero residual total mass. The strewn-field was computed taking into account the presence of two bright light flashes, revealing that the meteoroid had been very likely subject to fragmentation. Three days after the event, two samples, weighing 3.1 and 52.2 g, were collected as a result of a dedicated field search and thanks to the involvement of the local people. The two pieces were immediately recognized as freshly fallen fragments of meteorite. The computed orbital elements, compared with the ones of known Near-Earth Asteroids from the NEODyS database, are compatible with one asteroid only; 2013 VC10. The estimated original mass of the meteoroid, 3.5 kg, and size, approximately 13 cm, is so far the smallest among the current 35 cases in which meteorites were recovered from precise strewn-field computation thanks to observational data. This result demonstrates the effectiveness of accurate processing of fireball network data even on challenging events generated by small size meteoroids.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 644 ( 2020-12), p. A53-
    Abstract: Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile – hence precious – meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 10 6 km 2 . Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag 〈 –5; meteoroid size ≥~1 cm) amounts to 1250/yr/10 6 km 2 . This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 508, No. 4 ( 2021-10-30), p. 5716-5733
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 508, No. 4 ( 2021-10-30), p. 5716-5733
    Abstract: The increase in detector sensitivity and availability in the past three decades has allowed us to derive knowledge of the meteoroid flux and impact energy into the Earth’s atmosphere. We present the multi-instrument detected 2018 December 22 fireball over Western Pyrenees, and compare several techniques aiming to obtain a reliable method to be used when measuring impacts of similar scale. From trajectory data alone, we found a bulk density of 3.5 g cm−3 to be the most likely value for the Pyrenean meteoroid. This allowed to further constrain the dynamic mass, which translated into a kinetic energy of 1 ton TNT (4.184 × 109 J). For the second energy derivation, via the fireball’s corrected optical radiation, we obtained a more accurate empirical relation measuring well-studied bolides. The result approximates to 1.1 ton TNT, which is notably close to the nominal dynamic result, and agrees with the lower margin of the seismic-based energy estimation, yet way lower than the infrasound estimate. Based on the relation derived in this study, we consider the nominal estimate from both the dynamic and photometric methods to be the most accurate value of deposited energy (1 ton TNT). We show that the combination of these two methods can be used to infer the meteoroid density. Among the methods presented in this paper, we found that the optical energy is the most reliable predictor of impact energy near the ton TNT-scale.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 627 ( 2019-07), p. A78-
    Abstract: Context. Fireball networks are developing over the whole planet, with the aim of recovering meteorites and at the same time determining their orbits. The ultimate goal of such networks is to identify the parent bodies of meteorite families to achieve this, orbit accuracy is critical. Yet, the determination of an orbit relies on a long and complex reduction process including: (1) astrometry, with heavy distortion for fish-eye lenses, (2) estimation of the external bias on the observation, (3) fit of the trajectory, (4) deceleration model, and (5) actual orbit computation. Aims. Our goal is to compute accurate trajectories with an estimate of internal and external errors as realistic as possible, taking advantage of the dense observation network FRIPON (Fireball Recovery and InterPlanetary Observation Network), which comprises more than 100 cameras in France and Europe. In particular, we pay special attention to the distortion of images due to fish-eye lenses. In the present paper, we describe the analytical protocol that allows us to compute trajectories and their uncertainties. Methods. We developed a general distortion model to be used on the FRIPON fish-eye cameras. Such a model needs to be accurate even at low elevation, as most fireball observations are performed low on the horizon. The radial distortion is modelled by a nine-degree odd polynomial, hence by five parameters. In addition, we used three parameters to describe the geometry of the camera and two for non-symmetrical distortion. Lastly, we used a new statistical method taking systematic errors into account, which allows us to compute realistic confidence intervals. We tested our method on a fireball that fell on 2017-08-94 UT 00:06. Results. The accuracy of our astrometrical model for each camera is 2 arcmin (1 σ ), but the internal error on the fireball of 2017-08-94 UT 00:06 measurement is 0.7 arcmin (better than 1/10 pixel). We developed a method to estimate the external error considering that each station is independent and found it equal to 0.8 arcmin. Real residuals are coherent with our estimation of internal and external error for each camera, which confirms the internal consistency of our method. We discuss the advantages and disadvantages of this protocol.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: ChemInform, Wiley, Vol. 29, No. 45 ( 2010-06-19), p. no-no
    Type of Medium: Online Resource
    ISSN: 0931-7597 , 1522-2667
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2110203-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages