Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 598, No. 7879 ( 2021-10-07), p. 86-102
    Abstract: Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization 1–5 . First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Cell, Elsevier BV, Vol. 41, No. 8 ( 2023-08), p. 1397-1406
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell, Elsevier BV, Vol. 187, No. 5 ( 2024-02), p. 1255-1277.e27
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 19 ( 2023-10-02), p. 3237-3251
    Abstract: Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen–binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)–based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET–resistant patient-derived xenograft model that harbors the ESR1-e6 & gt;YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF–driven ET-resistant breast cancer. Significance: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5011-5011
    Abstract: Background: Transcriptionally active ESR1 gene fusions (ESR1-TAF) are a potent cause of estrogen receptor alpha-positive (ERα+) breast cancer endocrine therapy (ET) resistance. These ESR1-TAF are gain-of-function mutations, exhibiting estrogen-independent cell growth, motility and ET resistance. They are not directly druggable because the ERα C-terminal ligand binding domain (LBD) encoding sequence is replaced with a translocated in-frame partner gene sequence. Herein we utilized proteomic approaches to develop novel targeted therapies against ESR1-TAF driven tumorigenesis. Methods: ESR1 fusion cDNA constructs were expressed in ERα+ breast cancer cell lines (T47D and MCF7). Cell growth was assayed by an Alamar blue assay. A mass spectrometry (MS)-based Kinase Inhibitor Pulldown Assay (KIPA) was employed to identify druggable kinases that are commonly upregulated by diverse ESR1-TAFs. A panel of 22 ERα+ patient-derived xenograft (PDX) models were profiled using proteomics and phosphoproteomics to identify models with sensitivity to RET kinase inhibition. Results: KIPA detected an increased abundance of a receptor tyrosine kinase, RET, in T47D cells expressing ESR1-TAFs in an estrogen-independent manner, compared to stable cell lines expressing transcriptionally inactive fusions as well as wild-type ERα protein. Interestingly, RET was also increased when constitutive activating ERα LBD point mutants, Y537S and D538G, were expressed in breast cancer cells. Inhibition of the RET kinase in vitro by repurposing pralsetinib, an FDA-approved RET inhibitor for advanced thyroid and non-small-cell lung cancers, demonstrated a significant reduction in the growth of cells expressing ESR1-TAFs and ERα LBD mutants. These data nominate RET kinase as a common therapeutic vulnerability for ESR1-TAF expressing breast cancers. Proteomic profiling of 22 biologically heterogenous ERα+ PDX tumors defined targetable pathways and predicted tumor subsets that were responsive to RET inhibition therapy. Organoids and xenografts from the pan-ET resistant WHIM18 PDX (that expresses the ESR1-YAP1 TAF) were inhibited by pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. These data provide key preclinical rationale for the consideration of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. Interestingly, the growth of WHIM37 PDX (that expresses ERα D538G) that had low level of RET and high level of GFRα-1, the co-receptor of RET, was also suppressed by pralsetinib. This data suggests that either RET or GFRα-1 is a predictive biomarker for RET inhibitor efficacy. Conclusions: Kinome analysis of ESR1 translocated breast tumors using KIPA followed by drug sensitivity studies nominated RET as a new therapeutic target for ET-resistant ERα+ breast cancer. Citation Format: Xuxu Gou, Beom-Jun Kim, Meenakshi Anurag, Jonathan T. Lei, Meggie N. Young, Matthew V. Holt, Diana Fandino, Craig T. Vollert, Purba Singh, Mohammad A. Alzubi, Anna Malovannaya, Lacey E. Dobrolecki, Michael T. Lewis, Shunqiang Li, Matthew J. Ellis, Charles E. Foulds. Targeting kinome reprogramming in ESR1 fusion-driven breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5011.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 2992-2992
    Abstract: Background: Chemotherapy is essential for the management of patients with triple-negative breast cancer (TNBC). Identification of biomarkers that may indicate treatment efficacy will be critical to improve patient stratification prior to treatment. To elucidate molecular determinants underlying chemotherapy response, we conducted a proteogenomic study using TNBC patient-derived xenografts (PDXs) treated with chemotherapy. Approach: 50 TNBC PDXs were treated with either docetaxel or carboplatin. Changes in tumor volume after 4 weeks from baseline were evaluated. Genomic, transcriptomic, and mass-spectrometry-based proteomic profiling were performed on baseline tumors prior to treatment to identify associations with chemotherapy response. Fisher's exact tests were used to test for significant enrichment of mutation and copy number events (p & lt;0.05). Gene Set Enrichment Analysis was performed for pathway analyses. Results: At the DNA level, genomic aberrations in BRCA2 and BCL2 were enriched in carboplatin-responsive PDXs, while ARID1B aberrations were enriched in docetaxel-responsive PDXs. Gene-drug response correlations supported by both mRNA and protein-based measurements, but not mRNA or protein alone, for both carboplatin and docetaxel treatment in PDXs were associated with prognosis from basal and claudin-low human breast tumors in receipt of any chemotherapy from the METABRIC dataset. These data suggest that the combination of mRNA and protein data increased power to identify genes related to clinical outcome in TNBC. Some of the top genes overexpressed at both mRNA and protein levels in chemoresistant PDXs are targets of approved drugs, many of which have not been evaluated for their ability to augment response to taxane- or platinum-based chemotherapies. These genes are being investigated as therapeutic targets as well as markers of chemotherapy response. At the pathway level, both RNA and protein data associated models resistant to both agents with enhanced oxidative phosphorylation and translation regulation. Protein data further associated resistant models with elevated cytoplasmic ribosomal proteins. In contrast, both RNA and protein data associated tumors sensitive to both agents with genes involved in the E2F-Rb axis and cell cycle progression. Moreover, DNA mismatch repair and mRNA processing pathways were uniquely associated with carboplatin and docetaxel sensitivity, respectively, while amino acid metabolism and MAPK signaling pathways were uniquely associated with carboplatin and docetaxel resistance, respectively. Conclusion: Taken together, proteogenomic analysis of PDX tumors identifies diverse genes and pathways associated with chemotherapy response and further suggests potential therapeutic opportunities in TNBC. Citation Format: Jonathan T. Lei, Chen Huang, Ramakrishnan R. Srinivasan, Suhas Vasaikar, Lacey E. Dobrolecki, Alaina N. Lewis, Christina Sallas, Susan G. Hilsenbeck, C Kent Osborne, Mothaffar F. Rimawi, Matthew J. Ellis, Varduhi Petrosyan, Alexander B. Saltzman, Anna Malovannaya, Gerburg Wulf, Daniel C. Kraushaar, Tao Wang, Gloria V. Echeverria, Bing Zhang, Michael T. Lewis. Proteogenomic characterization of triple-negative breast cancer patient-derived xenografts reveals molecular correlates of differential chemotherapy response and potential therapeutic targets to overcome resistance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2992.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 4_Supplement ( 2021-02-15), p. PD8-02-PD8-02
    Abstract: Background: Endocrine therapy resistance is common and is a leading cause of breast cancer-related death. Thus, the search for therapeutic targets based on mechanistic insights into endocrine therapy resistance continues. Kinases are important drug targets and regulators in cells, many of which are involved in tumorigenesis and the development of treatment resistance. Mass spectrometry-based kinome analysis has been impeded by the low abundance of individual kinases. Here we utilized kinase inhibitor-conjugated beads to enrich and thereby sensitively profile the kinome of estrogen receptor-positive (ER+) breast cancer patient-derived xenograft (PDX) tumors under estradiol-deprivation treatment. Experimental design and methods: We harvested tumor samples from 20 breast PDX lines with various degrees of estradiol (E2) dependence in ovariectomized SCID-beige mice with and without E2 supplementation (n=3 per PDX line per arm). The kinases in the tumor lysates were enriched using kinase inhibitor pulldown (KIP) beads and the tightly bound kinases were quantified by mass spectrometry. To identify candidates, we selected for kinases that were highly E2-regulated in the E2-dependent PDX lines but constitutively expressed in E2-independent PDX lines. Survival analysis of candidate kinases in patients with ER+ breast cancer was performed using the METABRIC dataset. Results: Each PDX line had a unique yet reproducible kinome. To seek kinases with consistent relationships with estrogen dependence, we sought kinases that were statistically differentially expressed in tumors between E2 supplied and deprived conditions. Noticeably, membrane-associated tyrosine-and threonine-specific cdc2-inhibitory kinase (PKMYT1), a WEE family kinase known to have estrogen response elements (EREs) in its regulatory region, was significantly decreased after E2 deprivation in E2-dependent PDXs (log2 fold change = -7.86, p & lt;0.001) but was constitutive in E2-independent PDXs. High PKMYT1 mRNA expression was associated with poor prognosis in the ER+ samples in METABRIC (hazard ratio=2.2, p & lt;0.001). In contrast, the more studied member of the WEE family, WEE1, lacks an estrogen response element (ERE) and is not E2-regulated from the kinome profiling result. WEE1 mRNA expression level is not associated with the outcome of patients with ER+ breast cancer, suggesting that PKMYT1 has evolved a specific role in the cell cycle of ER+ tumors. Conclusion: Here, we analyzed the kinomes of 20 ER+ breast cancer PDX tumors with or without E2 by mass spectrometry. We discovered that PKMYT1 is a marker of hormone independent growth and poor outcome. Ongoing experiments that study the effects of PKMYT1 inhibition in both ER-dependent and independent circumstances will be presented. Citation Format: Anran Chen, Beom-Jun Kim, Doug W Chan, Purba Singh, Lacey E Dobrolecki, Jonathan T Lei, Shunqiang Li, Alana L Welm, Michael T Lewis, Matthew J Ellis. Kinome profiling of ER+ breast cancer PDXs identifies PKMYT1 as a marker of hormone independent growth and poor outcome [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PD8-02.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: ACS Medicinal Chemistry Letters, American Chemical Society (ACS), Vol. 14, No. 8 ( 2023-08-10), p. 1088-1094
    Type of Medium: Online Resource
    ISSN: 1948-5875 , 1948-5875
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2023
    detail.hit.zdb_id: 2532386-6
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 11 ( 2022-11-02), p. 2586-2605
    Abstract: Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2–M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31–33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. Significance: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31–33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 5_Supplement ( 2023-03-01), p. P2-23-01-P2-23-01
    Abstract: Background: Triple-negative breast cancer (TNBC) patients frequently receive combination chemotherapy treatment, but a direct comparison of response to carboplatin, docetaxel, and their combination in 50 TNBC patient-derived xenografts (PDXs) showed that combination treatment was largely ineffective at generating enhanced responses over the best single agent. This suggests de-escalation of chemotherapy may be possible if molecular mechanisms and biomarkers underlying response to individual treatments can be identified. To this end, we performed multi-omics profiling for the 50 TNBC PDXs. Methods: Orthotopic TNBC PDXs were treated with four weekly cycles of docetaxel, carboplatin, or the combination. Changes in tumor volume after 4 weeks of treatment were assessed quantitatively and by modified RECIST criteria. Genomic, transcriptomic, and mass-spectrometry-based proteomic profiling were performed on baseline tumors prior to treatments to identify associations with chemotherapy response at the gene and pathway level. ProMS was used to integrate both RNA and protein data to select a 5 RNA feature combination for optimized prediction of carboplatin response in a logistic regression model. Publicly available neoadjuvant chemotherapy clinical datasets with transcriptomic data and response information used for validation/testing included TNBC samples from: GSE18864, I-SPY2 (GSE194040), and BrighTNess (GSE164458). Results: Proteogenomic profiles revealed distinct genes associated with response to each agent and their combination, respectively, suggesting distinct molecular mechanisms underlying response to each treatment. A substantial number of genes associated with single agent and combination treatment were validated in multiple independent patient cohorts receiving platinum and taxane containing neoadjuvant therapy, confirming clinical relevance of our PDX panel. For the same treatment, different types of molecular data identified distinct sets of associated genes, providing highly complementary information. At the pathway level, RNA and protein data converged to metabolic and E2F/G2M related pathways which were upregulated in PDXs resistant or responsive to all treatment types, respectively, while variable levels of MYC-related proliferation pathways were observed across all treatments suggesting pathways that are common across and unique to different treatments. Several individual genes found to be higher in PDXs with better response to either single-agent had discriminatory power in external clinical TNBC datasets treated with similar neoadjuvant chemotherapy regimens. In addition, a logistic regression-based carboplatin response prediction model trained to select a group of 5 RNA markers (TKT, MAGI2, ATF6B, MCM7, LRP6) using both RNA and protein data performed the best in predicting response to cisplatin in a clinical TNBC dataset vs predicting response to other datasets with taxane and platinum + taxane combination containing chemotherapy regimens, demonstrating specificity of the prediction model. These results suggest potential individual biomarkers or biomarker combinations to select TNBC tumors that may respond to either single agent carboplatin, docetaxel, or their combination. PDXs refractory to all treatment arms had higher levels of proteostasis-related pathways including proteasome degradation and the unfolded protein response (UPR) related to endoplasmic reticulum stress and altered levels of chromatin regulation. Subsequent pharmacological targeting of the UPR pathway and targeting HDACs enhanced chemotherapy response. Conclusion: Proteogenomic characterization identifies molecular mechanisms and putative biomarkers for stratifying TNBC tumors for single or combination chemotherapy treatments, suggests targeted therapies to augment chemotherapy response, and provides a valuable resource for researchers and clinicians. Citation Format: Jonathan T. Lei, Chen Huang, Ramakrishnan R. Srinivasan, Suhas Vasaikar, Lacey E. Dobrolecki, Alaina N. Lewis, Na Zhao, Jin Cao, Susan G. Hilsenbeck, C. Kent Osborne, Mothaffar Rimawi, Matthew J. Ellis, Varduhi Petrosyan, Alexander B. Saltzman, Anna Malovannaya, John D. Landua, Bo Wen, Antrix Jain, Gerburg M. Wulf, Shunqiang Li, Daniel C. Kraushaar, Tao Wang, Xi Chen, Gloria V. Echeverria, Meenakshi Anurag, Bing Zhang, Michael T. Lewis. Patient-derived xenografts allow deconvolution of single agent and combination chemotherapy responses in triple-negative breast cancer [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P2-23-01.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages