In:
Symmetry, MDPI AG, Vol. 13, No. 9 ( 2021-09-14), p. 1697-
Abstract:
This work presents a multistart algorithm for solving the capacitated vehicle routing problem with 2D loading constraints (2L-CVRP) allowing for the rotation of goods. Research dedicated to graph theory and symmetry considered the vehicle routing problem as a classical application. This problem has complex aspects that stimulate the use of advanced algorithms and symmetry in graphs. The use of graph modeling of the 2L-CVRP problem by undirected graph allowed the high performance of the algorithm. The developed algorithm is based on metaheuristics, such as the Constructive Genetic Algorithm (CGA) to construct promising initial solutions; a Tabu Search (TS) to improve the initial solutions on the routing problem, and a Large Neighborhood Search (LNS) for the loading subproblem. Although each one of these algorithms allowed to solve parts of the 2L-CVRP, the combination of these three algorithms to solve this problem was unprecedented in the scientific literature. In our approach, a parallel mechanism for checking the loading feasibility of routes was implemented using multithreading programming to improve the performance. Additionally, memory structures such as hash-tables were implemented to save time by storing and querying previously evaluated results for the loading feasibility of routes. For benchmarks, tests were done on well-known instances available in the literature. The results proved that the framework matched or outperformed most of the previous approaches. As the main contribution, this work brings higher quality solutions for large-size instances of the pure CVRP. This paper involves themes related to the symmetry journal, mainly complex algorithms, graphs, search strategies, complexity, graph modeling, and genetic algorithms. In addition, the paper especially focuses on topic-related aspects of special interest to the community involved in symmetry studies, such as graph algorithms and graph theory.
Type of Medium:
Online Resource
ISSN:
2073-8994
DOI:
10.37473/dac/10.3390/sym13091697
Language:
English
Publisher:
MDPI AG
Publication Date:
2021
detail.hit.zdb_id:
2518382-5
Bookmarklink