Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 142, No. Suppl_3 ( 2020-11-17)
    Abstract: Genome-wide association studies have uncovered over 200 genetic loci underlying coronary artery disease (CAD), providing great hope for a deeper understanding of the causal mechanisms leading to this disease. However, in order to understand CAD at the molecular level, it is necessary to uncover cell-type-specific circuits and to use these circuits to dissect driver variants, genes, pathways, and cell types, in normal and diseased tissues. Here, we provide the most detailed single-cell dissection of human heart cell types, using cardiac biopsies collected during open-heart surgery from healthy, CAD, and CAD-related heart failure donors, and profiling both transcriptional (scRNA-seq) and epigenomic (scATAC-seq) changes. Using this approach, we identify 12 major heart cell types, including typical cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B cells, neurons, Schwann cells), and previously-unrecognized layer-specific epithelial and endothelial cell types. We define markers for each cell type, providing the first extensive reference set for the living human heart. In addition, we define differential gene expression patterns in CAD relative to control samples, revealing substantial differences in cell-type-specific expression of disease-related genes, emphasizing, for example, the importance of the vascular endothelium in the pathogenesis of CAD. Strikingly, further clustering of the cell types based on specific subtypes revealed important differences in their expression patterns of disease-associated genes. These changes enrich in known CAD genetic loci, enabling us to recognize their likely target genes from scRNA-seq expression changes, candidate driver variants based on scATAC-seq localization and differential DNA accessibility, and candidate upstream regulators based on their enriched motif occurrences in scATAC loci. Overall, our results highlight the relevance and potential of single-cell transcriptional and epigenomic analyses to gain new biological insights into cardiovascular disease, and to recognize novel therapeutic target genes, pathways, and the cell types where they act.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cardiovascular Research, Oxford University Press (OUP), Vol. 117, No. 5 ( 2021-04-23), p. 1339-1357
    Abstract: Oxidized phospholipids and microRNAs (miRNAs) are increasingly recognized to play a role in endothelial dysfunction driving atherosclerosis. NRF2 transcription factor is one of the key mediators of the effects of oxidized phospholipids, but the gene regulatory mechanisms underlying the process remain obscure. Here, we investigated the genome-wide effects of oxidized phospholipids on transcriptional gene regulation in human umbilical vein endothelial cells and aortic endothelial cells with a special focus on miRNAs. Methods and results We integrated data from HiC, ChIP-seq, ATAC-seq, GRO-seq, miRNA-seq, and RNA-seq to provide deeper understanding of the transcriptional mechanisms driven by NRF2 in response to oxidized phospholipids. We demonstrate that presence of NRF2 motif and its binding is more prominent in the vicinity of up-regulated transcripts and transcriptional initiation represents the most likely mechanism of action. We further identified NRF2 as a novel regulator of over 100 endothelial pri-miRNAs. Among these, we characterize two hub miRNAs miR-21-5p and miR-100-5p and demonstrate their opposing roles on mTOR, VEGFA, HIF1A, and MYC expressions. Finally, we provide evidence that the levels of miR-21-5p and miR-100-5p in exosomes are increased upon senescence and exhibit a trend to correlate with the severity of coronary artery disease. Conclusion Altogether, our analysis provides an integrative view into the regulation of transcription and miRNA function that could mediate the proatherogenic effects of oxidized phospholipids in endothelial cells.
    Type of Medium: Online Resource
    ISSN: 0008-6363 , 1755-3245
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1499917-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 41, No. 7 ( 2021-07), p. 2149-2167
    Abstract: Atherosclerosis is the underlying cause of most cardiovascular diseases. The main cell types associated with disease progression in the vascular wall are endothelial cells, smooth muscle cells, and macrophages. Although their role in atherogenesis has been extensively described, molecular mechanisms underlying gene expression changes remain unknown. The objective of this study was to characterize microRNA (miRNA)-related regulatory mechanisms taking place in the aorta during atherosclerosis. Approach and Results: We analyzed the miRNA expression changes in primary human aortic endothelial cells and human umbilical vein endothelial cells, human aortic smooth muscle cells, and macrophages (CD14+) under various proatherogenic stimuli by integrating GRO-seq, miRNA-seq, and RNA-seq data. Despite the highly cell-type-specific expression of multi-variant primary miRNAs, the majority of mature miRNAs were found to be common to all cell types and dominated by 2 to 5 abundant miRNA species. We demonstrate that transcription contributes significantly to the mature miRNA levels although this is dependent on miRNA stability. An analysis of miRNA effects in relation to target mRNA pools highlighted pathways and targets through which miRNAs could affect atherogenesis in a cell-type-dependent manner. Finally, we validate miR-100-5p as a cell-type specific regulator of inflammatory and HIPPO-YAP/TAZ-pathways. Conclusions: This integrative approach allowed us to characterize miRNA dynamics in response to a proatherogenic stimulus and identify potential mechanisms by which miRNAs affect atherogenesis in a cell-type-specific manner.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 1494427-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Human Genomics, Springer Science and Business Media LLC, Vol. 17, No. 1 ( 2023-06-03)
    Abstract: Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3 , and AGAP5 . We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
    Type of Medium: Online Resource
    ISSN: 1479-7364
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2147618-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages