Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Advances Vol. 6, No. 51 ( 2020-12-18)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 6, No. 51 ( 2020-12-18)
    Abstract: The microtubule nucleator γ-tubulin ring complex (γTuRC) is essential for the function of microtubule organizing centers such as the centrosome. Since its discovery over two decades ago, γTuRC has evaded in vitro reconstitution and thus detailed structure-function studies. Here, we show that a complex of RuvB-like protein 1 (RUVBL1) and RUVBL2 “RUVBL” controls assembly and composition of γTuRC in human cells. Likewise, RUVBL assembles γTuRC from a minimal set of core subunits in a heterologous coexpression system. RUVBL interacts with γTuRC subcomplexes but is not part of fully assembled γTuRC. Purified, reconstituted γTuRC has nucleation activity and resembles native γTuRC as revealed by its cryo–electron microscopy (cryo-EM) structure at ~4.0-Å resolution. We further use cryo-EM to identify features that determine the intricate, higher-order γTuRC architecture. Our work finds RUVBL as an assembly factor that regulates γTuRC in cells and allows production of recombinant γTuRC for future in-depth mechanistic studies.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 2810933-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    International Medical Research and Development Corporation ; 2021
    In:  International Journal of Biomedicine Vol. 11, No. Suppl_1 ( 2021-06-20), p. S10-S10
    In: International Journal of Biomedicine, International Medical Research and Development Corporation, Vol. 11, No. Suppl_1 ( 2021-06-20), p. S10-S10
    Abstract: Background: Microtubules (MTs) are essential cytoskeletal polymers that provide structural support for the cell and play important roles in cell division, motility, and intracellular transport. The γ-tubulin ring complex (γTuRC) is the major MT nucleator in animal cells. The molecular mechanism by which the γTuRC promotes MT nucleation remains poorly understood although a template-based mechanism, remains the most widely accepted (Moritz et al., 2000, Kollman et al., 2010). According to this model γTuRC, a 2 MDa multi-subunit protein complex, forms a lock washer-like structure, in which γ-tubulin molecules are arranged in a ring-shaped structure that serves as a template for the assembly of αβ-tubulin heterodimers. Methods: We have set up an in vitro system to purify the human γTuRC using infected insect cells with recombinant baculoviruses. This complex sample was subjected to cryo-EM analysis and single-particle reconstruction. Results: We have demonstrated that RUVBL1-RUVBL2 AAA-ATPase complex (RUVBL) controls the assembly and composition of γTuRC in human cells both in vivo and in vitro. Likewise, RUVBL assembles γTuRC from a minimal set of core subunits in a heterologous co-expression system. Purified, reconstituted γTuRC has nucleation activity and resembles native γTuRC (Consolati et al., 2020, Liu et al., 2020, Wieczorek et al., 2020), as revealed by its cryo-EM structure at ~4.0 Å resolution. Conclusion: We have been able to identify novel mechanistic and structural features that determine the intricate, higher-order γTuRC architecture (Zimmermann, Serna et al., 2020).
    Type of Medium: Online Resource
    ISSN: 2158-0510 , 2158-0529
    URL: Issue
    Language: Unknown
    Publisher: International Medical Research and Development Corporation
    Publication Date: 2021
    detail.hit.zdb_id: 2710779-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages