Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2003
    In:  Biochemical and Biophysical Research Communications Vol. 308, No. 2 ( 2003-08), p. 331-338
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 308, No. 2 ( 2003-08), p. 331-338
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2003
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2000
    In:  Journal of the American Society of Nephrology Vol. 11, No. 4 ( 2000-04), p. 595-603
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 11, No. 4 ( 2000-04), p. 595-603
    Abstract: The complex interactions of glomerular and tubular epithelial cells with the basal laminae play a critical role in renal function. Disruption of these interactions has been widely implicated in glomerular diseases and acute renal failure. MDC are a large family of membrane-bound proteins containing m etalloprotease, d isintegrin (integrin interaction sites), and c ysteine-rich domains. Little information is available concerning the presence of MDC in the kidney or their role in renal pathophysiology. Using degenerate PCR primers for the conserved metalloprotease and disintegrin domains of this protein family, cDNA templates from tubules, whole glomeruli, and glomerular epithelial cells (GEC) yielded a single, 195-bp product, which on sequence analysis corresponded to a region in the disintegrin domain of MDC9. Northern analysis of poly(A) + RNA from tubules, whole glomeruli, and GEC revealed a 3.9-kb transcript, identical to that of mouse MDC9. Using antibodies generated against a 21-amino acid peptide present in the metalloprotease domain of MDC9, Western analysis of concanavalinA-enriched glomerular microsomal extracts demonstrated both processed (76 kD) and unprocessed (116 kD) forms of MDC9, which upon reduction changed to the corresponding 84- and 124-kD forms. Histochemical studies revealed a basolateral localization of intrinsic MDC9 protein in renal cortical tubule cells and glomerular visceral epithelial cells, which colocalized with the β1 integrin chain. Expression of green fluorescence protein MDC9 chimeric constructs in GEC or polarized Madin-Darby canine kidney epithelial cells revealed a similar punctate basolateral surface localization. Transient overexpression of the soluble disintegrin domain-green fluorescence protein chimera in GEC led to dramatic changes in cellular morphology with rounding and detachment from cell monolayers. These studies document the presence of MDC9 in renal epithelial cells and suggest an important role for MDC9 in renal epithelial cellular interactions with the basal lamina and adjoining cells.
    Type of Medium: Online Resource
    ISSN: 1046-6673
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2000
    detail.hit.zdb_id: 2029124-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2005
    In:  Biochemical Journal Vol. 385, No. 2 ( 2005-01-15), p. 461-468
    In: Biochemical Journal, Portland Press Ltd., Vol. 385, No. 2 ( 2005-01-15), p. 461-468
    Abstract: Renal tubular epithelial cells in all nephron segments express a distinct member of the metalloprotease-disintegrin family, ADAM9 (adisintegrin and metalloprotease 9), in a punctate basolateral distribution co-localized to the β1 integrin chain [Mahimkar, Baricos, Visaya, Pollock and Lovett (2000) J. Am. Soc. Nephrol. 11, 595–603]. Discrete segments of the nephron express several defined β1 integrins, suggesting that ADAM9 interacts with multiple renal integrins and thereby regulates epithelial cell–matrix interactions. Intact ADAM9 and a series of deletion constructs sequentially lacking the metalloprotease domain and the disintegrin domain were assembled as chimaeras with a C-terminal GFP (green fluorescent protein) tag. Stable expression of the ADAM9/GFP protein on the surface of HEK-293 cells (human embryonic kidney 293 cells) significantly decreased adhesion to types I and IV collagen, vitronectin and laminin, but had little effect on adhesion to fibronectin. Expression of the disintegrin/cysteine-rich/GFP construct yielded a similar, but more marked pattern of decreased adhesion. Expression of the cysteine-rich/GFP construct had no effect on adhesion, indicating that the disintegrin domain was responsible for the competitive inhibition of cell–matrix binding. To define the specific renal tubular β1 integrins interacting with the ADAM9 disintegrin domain, a recombinant GST (glutathione S-transferase)-disintegrin protein was used as a substrate in adhesion assays in the presence or absence of specific integrin-blocking antibodies. Inclusion of antibodies to α1, α3, α6, αv and β1 blocked adhesion of HEK-293 cells to GST-disintegrin protein. Immobilized GST-disintegrin domain perfused with renal cortical lysates specifically recovered the α3, α6, αv and β1 integrin chains by Western analysis. It is concluded that ADAM9 is a polyvalent ligand, through its disintegrin domain, for multiple renal integrins of the β1 class.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2005
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular & Cellular Proteomics, Elsevier BV, Vol. 1, No. 1 ( 2002-01), p. 30-36
    Type of Medium: Online Resource
    ISSN: 1535-9476
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 2071375-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 312, No. 6 ( 2017-06-01), p. F1166-F1183
    Abstract: Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 “primes” the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1477287-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages