Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Subjects(RVK)
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 617, No. 7962 ( 2023-05-25), p. 764-768
    Abstract: Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown 1 to be highly efficient for discovery of genetic associations 2 . Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group 3 . Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling ( JAK1 ), monocyte–macrophage activation and endothelial permeability ( PDE4A ), immunometabolism ( SLC2A5 and AK5 ), and host factors required for viral entry and replication ( TMPRSS2 and RAB2A ).
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 619, No. 7971 ( 2023-07-27), p. E61-E61
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 140, No. 10 ( 2022-09-08), p. 1094-1103
    Abstract: Gout is a common inflammatory arthritis caused by precipitation of monosodium urate (MSU) crystals in individuals with hyperuricemia. Acute flares are accompanied by secretion of proinflammatory cytokines, including interleukin-1β (IL-1β). Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition predisposing to hematologic cancers and cardiovascular disease. CHIP is associated with elevated IL-1β, thus we investigated CHIP as a risk factor for gout. To test the clinical association between CHIP and gout, we analyzed whole exome sequencing data from 177 824 individuals in the MGB Biobank (MGBB) and UK Biobank (UKB). In both cohorts, the frequency of gout was higher among individuals with CHIP than without CHIP (MGBB, CHIP with variant allele fraction [VAF] ≥2%: odds ratio [OR] , 1.69; 95% CI, 1.09-2.61; P = .0189; UKB, CHIP with VAF ≥10%: OR, 1.25; 95% CI, 1.05-1.50; P = .0133). Moreover, individuals with CHIP and a VAF ≥10% had an increased risk of incident gout (UKB: hazard ratio [HR], 1.28; 95% CI, 1.06-1.55; P = .0107). In murine models of gout pathogenesis, animals with Tet2 knockout hematopoietic cells had exaggerated IL-1β secretion and paw edema upon administration of MSU crystals. Tet2 knockout macrophages elaborated higher levels of IL-1β in response to MSU crystals in vitro, which was ameliorated through genetic and pharmacologic Nlrp3 inflammasome inhibition. These studies show that TET2-mutant CHIP is associated with an increased risk of gout in humans and that MSU crystals lead to elevated IL-1β levels in Tet2 knockout murine models. We identify CHIP as an amplifier of NLRP3-dependent inflammatory responses to MSU crystals in patients with gout.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Genetics in Medicine, Elsevier BV, Vol. 25, No. 1 ( 2023-01), p. 49-62
    Type of Medium: Online Resource
    ISSN: 1098-3600
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2063504-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Arthroscopy: The Journal of Arthroscopic & Related Surgery, Elsevier BV, Vol. 39, No. 5 ( 2023-05), p. 1198-1210
    Type of Medium: Online Resource
    ISSN: 0749-8063
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1491233-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 758-758
    Abstract: Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 300-300
    Abstract: Abstract 300 Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders with highly variable clinical features. Much of this heterogeneity is likely driven by the diverse set of genetic lesions associated with MDS. Prognostic scoring systems help stratify patients into risk groups based on clinical measures, bone marrow blast counts, and common cytogenetic abnormalities. However, the presence or absence of point mutations is not considered by the prognostic scoring systems used in clinical practice. Since more than half of MDS cases have a normal karyotype, genetic abnormalities do not contribute to prognostic risk in the majority of patients. In order to better understand the frequency, overlap, and clinical impact of point mutations in MDS, we examined samples from a cohort of 438 patients for mutations in cancers genes. First we screened 191 samples for the presence of 1233 known oncogenic mutations in over 130 cancer-related genes using a high-throughput, mass spectroscopic genotyping platform (OncoMap). Somatic mutations were validated in 7 genes. Known oncogenic mutations in these genes were then sought in an expanded cohort of 438 MDS patient samples. Additional mutated samples were identified for 6 of these 7 genes, including NRAS, KRAS, BRAF, and JAK2. Our second approach utilized next-generation 454-pyrosequencing of several tumor suppressor genes and MDS-related genes not covered with OncoMap, including TET2, RUNX1, TP53, CBL, NPM1, PTEN and CDNK2A. This was complemented by Sanger sequencing of additional genes including IDH1, IDH2, ASXL1, and KDM6A. In aggregate, 50.9% of samples were found to carry at least one mutation, including 50.8% of samples with normal cytogenetics. The most frequently mutated genes were TET2 (18%), ASXL1 (14%), RUNX1 (8%), and TP53 (7%). Recurring mutations in NRAS, JAK2, IDH1, IDH2, CBL, NPM1, KDM6A, and KRAS were identified at lower frequency. TP53 mutations were largely exclusive of all other mutations except for those in TET2 and TP53 mutations were highly associated with complex cytogenetics and abnormalities of chromosome 17. TET2 mutations were overrepresented in cases of normal cytogenetics but not predictive of survival, even after stratification by mutant allele burden. Mutations of RUNX1, NRAS, and TP53 were each associated with a lower platelet count (p 〈 0.001 for each comparison). Mutations in these genes and CBL were also associated with a higher bone marrow blast count (p≤0.01 for each comparison). Several genes, including NRAS, RUNX1, TP53, CBL, IDH2, and ASXL1 were associated with decreased overall survival (p=0.01, p 〈 0.001, p 〈 0.001, p=0.02, p=0.03, p=0.01, respectively). In a multivariable model including age, sex, and International Prognostic Scoring System risk group, RUNX1 (hazard ratio [HR], 1.61; 95% confidence interval [CI] , 1.10–2.35), TP53 (HR, 2.34; 95% CI, 1.50–3.64), and ASXL1 (HR, 1.42; 95%, CI1.05-1.92) were independent predictors of decreased overall survival. In summary, we performed a broad survey for gene mutations associated with myeloid neoplasms or other cancers. In our cohort of 438 clinically annotated MDS patient samples, we identified point mutations in over 15 genes with more than 50% of samples harboring at least one mutation. Mutations in several genes were associated with clinical features of MDS including thrombocytopenia and elevated blast counts. Mutations of RUNX1, TP53, and ASXL1 (present in 26.3% of samples) are independent predictors of decreased survival, demonstrating that incorporation of point mutations adds information to the risk stratification systems used in clinical practice. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 209-209
    Abstract: Abstract 209 In order to identify novel approaches to the targeting of acute myeloid leukemia (AML), we performed a pooled in vivo shRNA screen on murine leukemic stem cells (LSCs) targeting factors related to Wnt-signaling. We found that silencing of casein kinase 1 alpha (Csnk1a1), a serine-threonine kinase and a critical negative regulator of beta catenin, dramatically depleted murine LSCs in vivo. This is a surprising result since beta catenin is essential for MLL-AF9 AML. Validation experiments with shRNA vectors co-expressing GFP recapitulated the result from the pooled screen and confirmed efficient knockdown of both the Csnk1a1 transcript and protein. To rule out off-target effects of the Csnk1a1 shRNAs, we co-expressed the shRNAs with a Csnk1a1 cDNA mutated at the shRNA binding sites, and observed a complete rescue of the proliferative defect. Additionally, we demonstrated that a kinase dead form of Csnk1a1(D136N) failed to rescue this proliferation defect. These results indicate the specific effect of these hairpins on Csnk1a1 function in leukemia cells. The role of Csnk1a1 in normal hematopoietic stem and progenitor cells (HSPCs) is not known. We introduced the Csnk1a1 shRNA vectors into HSPCs and followed GFP over time in a bone marrow transplantation setting. Over a 24-week period, we observed a 3–4 fold depletion of GFP positive donor cells with two independent Csnk1a1 shRNAs compared to control. In contrast, the same shRNAs resulted in a 20–25 fold depletion of leukemia cells in vivo over a 2-week time period, suggesting that leukemia cells are selectively dependent on Csnk1a1. To more rigorously study Csnk1a1 in hematopoiesis, we generated a Csnk1a1 conditional knockout mouse (loxP sites flanking critical exon 3) and crossed it with the Mx1-cre mouse, allowing for hematopoietic specific inducible Csnk1a1 excision. In competitive bone marrow transplantations, Csnk1a1(−/−) donor cells exhibited a severe competitive disadvantage resulting in a 20-fold depletion of donor cells over a 12-week period. Interestingly, Csnk1a1(−/−) donor cells were devoid of myeloid lineage cells, suggesting that Csnk1a1 is particularly important for the generation or survival of myeloid cells. Moreover, in line with our shRNA results, we found that Csnk1a1(−/−) cells were resistant to MLL-AF9 mediated transformation, demonstrating that Csnk1a1 is essential also for leukemia initiation. To identify critical targets of Csnk1a1, we performed gene expression profiling of Csnk1a1 silenced cells. We identified enrichment of a p53 signature using Gene Set Enrichment Analysis (FDR= 0.001). Induction of p53 and its target p21 was confirmed by western blots in both Csnk1a1 silenced leukemia cells and in Csnk1a1(−/−) bone marrow cells. Furthermore, we demonstrated that p53(−/−) leukemia cells are resistant to the proliferative defect induced by Csnk1a1 silencing. We next tested whether D4476, a small molecule casein kinase inhibitor, would exhibit selective anti-leukemic effects. Whereas treatment of LSCs with D4476 inhibited their proliferation (IC50: 7μM), concentrations up to 40μM had minimal effects on normal HSPCs. Confirming the specificity of the compound, we found that cells carrying Csnk1a1 shRNAs were sensitized to D4476 in a dose dependent manner. In contrast, overexpression of Csnk1a1 desensitized leukemia cells for D4476 treatment, suggesting that D4476 kills leukemia cells in a Csnk1a1 dependent manner. Finally, we mixed 10,000 HSPCs with 10,000 LSCs and treated them ex vivo with either D4476 or DMSO control for 48 hours followed by injection into lethally irradiated mice. Whereas exposure to the drug caused prolonged latency of disease with some recipients never developing leukemia, there was no significant effect on HSPC donor cell chimerism at 8 weeks post transplantation compared control, indicating limited toxicity from the drug. In summary, these findings identify Csnk1a1 as critical for maintaining both normal HSCs and LSCs via modulation of p53 activity. Importantly, LSCs were significantly more sensitive to small molecule inhibition of Csnk1a1, suggesting that Csnk1a1 may be an attractive new drug target in AML. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1892-1892
    Abstract: The 5q-syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletion of Chromosome 5q. The RPS14 gene was identified as a critical gene for the erythroid phenotype of the 5q- syndrome using an RNA interference screen. We generated a murine model for conditional, heterozygous inactivation of Rps14 in the bone marrow to investigate the biological basis of del(5q) MDS. To explore the role of Rps14 on hematopoietic stem cell (HSC) function and erythroid differentiation, we generated a mouse model in which Rps14 exons 2-4 are flanked by loxP sites. Following crosses to Mx1Cre transgenic mice, we induced Rps14 excision in hematopoietic cells by poly(I:C). Two weeks after induction of the gene excision, mice developed significantly reduced hemoglobin and red blood cell counts with a significantly higher MCV compared to Mx1Cre+ controls. Bone marrow analysis confirmed an erythroid differentiation defect specifically at the transition from the CD71+Ter119+ (RII, basophilic erythroblasts/early polychromatophilic erythroblasts) to the CD71 intermediate/lowTer119+ (RIII/IV, poly/orthochromatophilic erythroblasts, enucleated erythrocytes) population, accompanied by significant up-regulation of p21 in the RIII population. Histopathology of spleens demonstrated compensatory extramedullar erythropoiesis. The bone marrow was normocellular with a significant increase in hypolobulated megakaryocytes correlating with high platelet counts and dysplastic platelets in the peripheral blood, reflecting the pathognomonic megakaryocyte phenotype in del(5q) MDS. At 50 weeks of age, Rps14-/+Mx1Cre+ developed a more severe macrocytic anemia in the peripheral blood. We thus tested whether a more severe erythroid phenotype could be induced by treatment with the hemolytic agent phenylhydrazine (PH; 2x single dose 25mg/kg body weight, s.c.). In response to PH treatment, Rps14 haploinsufficient mice developed a more severe anemia than control mice, had a delayed reticulocyte response, and a differentiation defect again specifically at the transition from RII to RIII/IV accompanied by a compensatory increase in the RI (CD71+Ter119-) pro-erythroblast/early basophilic population. Megakaryocyte-erythrocyte progenitors were increased, and pre-CFU-E and CFU-E numbers were normal. To further elucidate the mechanisms by which haploinsufficiency of Rps14 causes ineffective erythropoiesis, we analyzed cell cycle, p53 and apoptosis. We found a significant induction of p53 specifically in the RI population and a dramatic increase of apoptotic cells in RIII, suggesting that increased apoptosis accounts for the erythroid failure. We therefore tested if genetic inactivation of p53 rescues the erythroid phenotype. In Rps14-/+p53-/+Mx1Cre+ mice the erythroid differentiation defect was restored and mice had a comparable response to PH as Mx1Cre+ controls. In PH dose escalation experiments (35mg/kg), Rps14 haploinsufficient mice died from the severe anemia and delayed reticulocyte response, while compound p53 loss rescued the erythroid failure. Accordingly, forced erythroid differentiation in vitro was significantly impaired in Rps14 haploinsufficient hematopoietic stem and progenitor cells. We measured protein synthesis by O-propargyl (OP)-puromycin incorporation. Rps14 haploinsufficient cells had a significantly reduced protein synthesis in CD71low cells (late erythroblasts) that could not be fully restored by p53 inactivation although the protein synthesis in p53 heterozygote cells alone was significantly higher. The decreased protein synthesis in Rps14-/+p53-/-Mx1Cre+ compound cells might also account for the decreased stem cell expansion in repopulation assays compared to cells with only p53 loss. Our data provide in vivo evidence that Rps14 haploinsufficiency contributes to the erythroid differentiation defect in del(5q) MDS by reduced protein synthesis and p53 induction in late-stage erythroblasts. This murine model recapitulates the erythroid und megakaryocytic phenotype of the 5q-sydrome and provides a model for understanding the underlying mechanisms in the pathogenesis of ribosomal-mediated erythroid failure in del(5q) MDS. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 595-595
    Abstract: Background: Gout is a highly prevalent arthritis associated with debilitating joint pain and functional impairment. It is caused by elevated serum uric acid levels (hyperuricemia) and triggered by precipitation of urate crystals in and around joints. Urate crystals are ingested by macrophages and provoke an innate immune response with subsequent secretion of inflammatory cytokines including interleukin 1 beta (IL-1B). Clonal hematopoiesis of indeterminate potential (CHIP) is a precursor to hematologic malignancies defined by somatic mutations in hematopoietic cells that drive clonal expansion and inflammation. Specifically, CHIP is associated with an increased risk of cardiovascular events and can accelerate atherosclerosis. Mutations in TET2, one of the most commonly mutated genes in CHIP, lead to increased expression of IL-1B through inflammasome activation. Here we investigate the role of CHIP in the development of gout using a combination of human genetic studies and mouse models of CHIP. Methods: To determine the clinical association between CHIP and gout, we analyzed exome sequencing and clinical data from & gt;50,000 individuals included in the UK Biobank (UKB) and Mass General Brigham Biobank (MGBB). To test whether mutant blood cells can promote gout, Tet2- and Dnmt3a-deficient mouse models were used. Results: CHIP was more prevalent in individuals with gout than without gout (MGBB: 12.3% vs. 7.9%, P=0.017; UKB: 8.2% vs. 5.8%, P=0.011) and individuals with CHIP were at increased risk of developing gout (UKB: hazard ratio [HR], 1.59; 95% confidence interval [CI] , 1.27-2.00; P & lt;0.001). In multivariable analyses, CHIP with variant allele fraction (VAF) ≥10% was associated with higher risk of incident gout compared to no CHIP after adjusting for common gout risk factors (UKB: HR, 1.46; 95% CI, 1.07-2.01; P=0.019). To determine if somatically mutated blood cells directly contribute to the aberrant immune response in gout, we utilized a mouse model of MSU-mediated peritonitis. Compared to control animals, mice with hematopoietic-specific Tet2 deficiency demonstrated markedly increased IL-1B serum levels after injection with MSU (P & lt;0.05). To study gene-specific contributions to joint tissue injury, we established an in vivo model that closely represents the clinical phenotype of gout. Following MSU treatment in situ, Tet2-deficient animals developed exacerbated paw edema compared to wild-type controls (P & lt;0.05). We next generated bone-marrow derived macrophages (BMDM) from Tet2- and Dnmt3a-deficient mice to specifically investigate the MSU-induced cytokine profile in mutant macrophages. Consistent with our in vivo data, IL-1B was the most differentially secreted cytokine after MSU treatment in both Tet2-deficient and Dnmt3a-deficient BMDM compared to wild-type cells (P & lt;0.05). RNA-sequencing confirmed a strong pro-inflammatory gene expression signature of MSU-treated Tet2- and Dnmt3a-deficient macrophages. Finally, we found that pharmacologic inhibition or genetic loss of inflammasome abrogated IL-1B secretion in Tet2- and Dnmt3a-deficient macrophages treated with MSU. Conclusion: CHIP is associated with an increased risk of having and developing gout in human cohorts and distinct mouse models confirm a direct influence of mutant hematopoietic cells on gout-induced inflammation and arthropathy. CHIP may provide a mechanistic explanation for the heterogeneity in clinical symptoms and inflammation due to gout. Our findings substantiate the biologic rationale for interventional strategies directed at CHIP-associated inflammatory conditions beyond cardiovascular disease and thereby define a path for clinical evaluation of targeted therapies for patients with CHIP-positive gout. Disclosures Miller: Foundation Medicine: Consultancy. Neuberg: Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Other: Stock ownership. Natarajan: Amgen: Research Funding; Apple: Consultancy, Research Funding; AstraZeneca: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Boston Scientific: Research Funding; Blackstone Life Sciences: Consultancy; Genentech: Consultancy; Foresite Labs: Consultancy. Rao: Janssen: Honoraria, Research Funding; Pfizer: Honoraria; Bristol-Myers Squibb: Honoraria, Research Funding; GlaxoSmithKline: Honoraria; Merck: Honoraria; Scipher Medicine: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages