Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 98-98
    Abstract: Different MPNs have distinct rates of malignant transformation (PMF 〉 PV 〉 ET). Although PV and ET can arise from hematopoietic stem/progenitor cells (HSPCs) with similarly activated JAK-STAT oncogenic pathway, the transformation rate into secondary myelofibrosis and leukemia is higher for PV than for ET. However, the underlying reasons are not fully clear. Whereas in some cases secondary mutations might cause transformation, it remains unclear whether distinct bone marrow (BM) microenvironments can influence the progression of MPNs or any preleukemic disorder. Previous studies have suggested that normal BM niches close to bone (endosteal) promote HSPC quiescence, whereas non-endosteal vessels permit transmigration of activated HSPCs. We hypothesized that PV and ET HSPCs might expand in different BM niches, which could thereby influence disease progression. To address this question, we performed combined two-photon and confocal real-time intravital microscopy in the skull BM of WT mice transplanted with HSPCs from WT mice or MPN mice carrying the same driver mutation (JAK2V617F) but showing phenotypically distinct diseases (ET or PV). ET HSPCs resembled WT HSPCs in their homing and engraftment near bone (22±15 and 26±13 μm, respectively) 3 days after i.v. injection into lethally-irradiated WT mice. In contrast, PV HSPCs located significantly further (31±21 μm) from bone, which was independently confirmed in a distinct PV model. The different homing of ET and PV HSPCs was similarly observed in non-irradiated WT recipients and was therefore independent of myeloablative conditioning. Following engraftment, ET and PV HSPCs preferentially expanded in endosteal and non-endosteal locations, respectively, over 7 months' follow up. Importantly, the asymmetric expansion of HSPCs in ET and PV was confirmed in human BM trephines. Human CD34+ HSPCs were significantly closer to bone in ET than in PV patients (86±2 vs. 109±6 μm). Together, these results suggest that mutated HSPCs preferentially occupy distinct BM niches in ET and PV. Murine ET and PV HSPCs also differed in their dynamic interactions with the microenvironment. ET HSPCs migrated significantly faster (1 μm/min) than PV HSPCs (0.8 μm/min) and covered longer tracks after 1 h (57±2 and 35±1 μm, respectively). Moreover, ET HSPCs (but not PV HSPCs) migrated faster when closer to bone, suggesting an exploratory strategy of ET HSPCs to find endosteal niches. Separation of endosteal and non-endosteal BM fractions revealed increased abundance of integrin β3+ HSPCs in the endosteal BM of ET mice carrying JAK2V617F or CALRdel52/del52 mutations, but not in different PV models (despite generally sharing oncogenic JAK-STAT activation). Furthermore, competitive gravity adhesion assay and interference reflection microscopy showed that ET HSPCs are more adhesive to ECM substrates of integrin β3, suggesting that integrin β3 might trigger endosteal lodging of ET HSPCs. Asymmetric HSPC expansion caused differential microenvironmental remodeling possibly explaining differences in the pathophysiology and secondary outcomes of ET and PV. Non-endosteal sinusoids were dilated in different PV (but not ET) models, whereas CD31hiSca1hi arterioles and aberrant bone-forming integrin β1+ blood vessels increased only in ET mice. Similarly, sinusoidal vessels showed increased coverage by the integrin β1 ligand laminin α4 only in ET mice. Consequently, increased bone (μCT), osteoblasts and osteoclasts were found in ET but not PV mice. Increased expression of vascular-derived bone-forming factors (such as Bmp1 and Dll4) downstream of endothelial laminin α4/integrin β1 signaling might trigger osteosclerosis in ET mice. Finally, we tested whether HSPC location might directly impact ET progression. In a separate study we found that β3-adrenergic receptor (AR) signaling regulates Cxcl12-dependent BM HSPC localization (ASH abstract ID 116015). Therefore, we transplanted WT or ET donor BM cells into WT and β3-AR KO mice. Measurement of peripheral blood counts over 28 weeks showed that the microenvironment lacking β3-AR significantly worsened thrombocytosis and leukocytosis in ET, which correlated with redistribution of HSPCs and their progeny away from bone towards central BM. Altogether, these results suggest that differential interactions with the microenvironment might impact disease progression in MPNs and possibly in other preleukemic disorders. Disclosures Mead: Cell Therapeutics: Consultancy; Bristol-Myers Squibb: Consultancy; ARIAD: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Research Funding; Elstar: Research Funding; Evotek: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 1 ( 2016-07-07), p. e1-e9
    Abstract: We develop and validate Karyogene, a comprehensive one-stop diagnostic platform for the genomic analysis of myeloid malignancies. Karyogene simultaneously detects substitutions, insertions/deletions, translocations, copy number and zygosity changes in a single assay.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2015
    In:  Science Translational Medicine Vol. 7, No. 306 ( 2015-09-23)
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 7, No. 306 ( 2015-09-23)
    Abstract: Certain leukemia-initiating mutations drive expansion of hemopoietic clones specifically under the selection pressures that prevail in an aged microenvironment.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Reports, Elsevier BV, Vol. 17, No. 4 ( 2016-10), p. 1193-1205
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2649101-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cell Reports, Elsevier BV, Vol. 10, No. 8 ( 2015-03), p. 1239-1245
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2649101-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood Advances, American Society of Hematology, Vol. 1, No. 14 ( 2017-06-13), p. 968-971
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 33-35
    Abstract: Background Myeloproliferative neoplasms (MPN) commonly result from mutations in genes encoding the kinase JAK2 or the multi-functional protein CALR. In preclinical studies, estrogen receptor alpha (ERα) modulation restores normal apoptosis in JAK2V617F hematopoietic progenitors (HSPCs). Use of selective ER modulators (SERM) such as tamoxifen may permit the molecular reduction of MPNs. Methods TAMARIN is a Trials Acceleration Programme, Phase II, multicentre, single arm A'herns design clinical trial assessing tamoxifen's safety and activity in reducing molecular markers of disease burden in MPN male patients aged ≥60 years and post-menopausal female patients with stable blood counts, no history of thrombosis and ≥20% mutated JAK2V617F, CALR 5bp insertion or CALR 52bp deletion. Based on tamoxifen's safety profile in ER+ breast cancer, an oral dose of 20 mg once daily was initially given and progressively escalated to 40 mg, in addition to standard cytoreductive therapy (excluding treatments known to lower allele burden eg interferon). Mutant allele burden was measured after 12 and 24 weeks (w) of treatment. The A'herns success criteria required the primary outcome ( & gt;50% reduction in allele burden at 24w) be observed in ≥3 patients (Barosi Leuk. 2015). Patient blood (baseline, 12 and 24w) samples were collected and CD34+ HSPCs were isolated in a subset for RNA-Seq, which was also performed on HEL and UKE-1 JAK2V617F-mutated human cell lines treated with tamoxifen/vehicle. Apoptosis and oxidative phosphorylation (OXPHOS) were measured in SERM-treated cell lines for confirmation. Results and Discussion 38 patients (37% essential thrombocythaemia (ET), 29% polycythaemia vera (PV), 16% primary myelofibrosis (PMF), 13% post-PV MF and 5% post-ET MF) were recruited over 112w. 33 patients completed ≥24w of tamoxifen treatment, 1 was untreated, 1 discontinued following an unprovoked thrombotic event and 3 discontinued due to toxicity. 4 patients achieved the primary outcome and 6 additional patients met the secondary outcome (≥25% reduction)(A-B). Responders included 4 JAK2V617F PV males, a JAK2V617F PMF female and ET patients of both genders carrying JAK2V617F, CALRdel52 or CALRins5 mutations. 4 patients remain on trial treatment beyond 48w as they are considered to be deriving clinical benefit. Two grade 3 adverse events unrelated to tamoxifen, as well as 1 superficial thrombophlebitis and 1 deep vein thrombosis (grade 2) occurred on study. HSPC transcriptome seggregates responders and non-responders perfectly at baseline (C), suggesting a potential predictive signature of response. Pathway analysis of differentially-expressed genes shows enrichment of myeloid differentiation and hormone-dependent transcriptional complex assembly in responders at baseline. In contrast, chromosome segregation, DNA replication, and chromosome condensation pathways are enriched in non-responders. Gene-set enrichment analysis (GSEA) reveals increased apoptosis and oxidative phosphorylation (OXPHOS) signatures in responders at baseline (D). Upregulated genes in responders are associated with H3K4me1 modification whilst genes upregulated in non-responders are associated with H3K9me3, suggesting the possibility that chromatin modifications account for tamoxifen sensitivity. 24w after treatment, OXPHOS and ROS pathways are downregulated in responder HSPCs (E) but upregulated in non-responders (F), suggesting striking differences in the metabolism of HSPCs in both groups and/or the eradication of sensitive HSPCs in responders. Reduced OXPHOS pathways and deregulated expression of unfolded protein response (UPR) genes were confirmed in HEL and UKE-1 cells. In fact, tamoxifen induces dose-dependent apoptosis in HEL and UKE-1 cells, where serum deprivation or UPR inducers sensitize resistant cells to tamoxifen-induced apoptosis, which is associated with decreased OXPHOS and energy (ATP) production. Conclusions These results demonstrate the safety and activity of tamoxifen in reducing mutant allele burden in a subset of MPN patients who could be prospectively identified based on their transcriptomic signature at baseline. Tamoxifen can induce apoptosis of human JAK2V617F or CALR mutated HSPCs through metabolic and transcriptional effects. These results advocate for future studies to test the effects of SERMs in MPN with careful consideration of thrombotic risk. Disclosures Harrison: Roche: Honoraria; Novartis: Honoraria, Research Funding, Speakers Bureau; Janssen: Speakers Bureau; AOP Orphan Pharmaceuticals: Honoraria; Promedior: Honoraria; Shire: Honoraria, Speakers Bureau; CTI Biopharma Corp: Honoraria, Speakers Bureau; Celgene: Honoraria, Research Funding, Speakers Bureau; Sierra Oncology: Honoraria; Gilead Sciences: Honoraria, Speakers Bureau; Incyte Corporation: Speakers Bureau. Mead:CTI: Consultancy; Gilead: Consultancy; Celgene/BMS: Consultancy, Honoraria, Other: travel, accommodations, expenses, Research Funding; Novartis: Consultancy, Honoraria, Other: travel, accommodations, expenses, Research Funding, Speakers Bureau; Abbvie: Consultancy. Knapper:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Ewing:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. McMullin:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy; Celgene: Consultancy; Abbvie: Membership on an entity's Board of Directors or advisory committees. Narayanan:Novartis: Other: Educational support to attend conferences; MSD: Speakers Bureau; Celgene: Other: Educational support to attend conferences; Alexion: Speakers Bureau; Takeda: Other: Educational support to attend conferences. Milojkovic:Incyte: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria. Drummond:Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Blueprint Medicine Corporation: Research Funding; Astellas: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. OffLabel Disclosure: Tamoxifen is a selective estrogen receptor modulator frequently used in estrogen receptor-positive breast cancer.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 135, No. 4 ( 2020-01-23), p. 269-273
    Abstract: Although acquisition of leukemia-associated somatic mutations by 1 or more hematopoietic stem cells is inevitable with advancing age, its consequences are highly variable, ranging from clinically silent clonal hematopoiesis (CH) to leukemic progression. To investigate the influence of heritable factors on CH, we performed deep targeted sequencing of blood DNA from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs (aged 70-99 years). Using this highly sensitive approach, we identified CH (variant allele frequency ≥0.5%) in 62% of individuals. We did not observe higher concordance for CH within MZ twin pairs as compared with that within DZ twin pairs, or to that expected by chance. However, we did identify 2 MZ pairs in which both twins harbored identical rare somatic mutations, suggesting a shared cell of origin. Finally, in 3 MZ twin pairs harboring mutations in the same driver genes, serial blood samples taken 4 to 5 years apart showed substantial twin-to-twin variability in clonal trajectories. Our findings propose that the inherited genome does not exert a dominant influence on the behavior of adult CH and provide evidence that CH mutations may be acquired in utero.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Baskent University ; 2012
    In:  Experimental and Clinical Transplantation Vol. 10, No. 5 ( 2012-9-27), p. 508-512
    In: Experimental and Clinical Transplantation, Baskent University, Vol. 10, No. 5 ( 2012-9-27), p. 508-512
    Type of Medium: Online Resource
    ISSN: 1304-0855 , 2146-8427
    Language: Unknown
    Publisher: Baskent University
    Publication Date: 2012
    detail.hit.zdb_id: 2375084-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 554-554
    Abstract: Despite progress in understanding its genomics and molecular pathogenesis, the therapeutic landscape of acute myeloid leukaemia (AML) has changed little in the last 40 years. Whilst our improved molecular understanding of AML permits some optimism that progress may be forthcoming, an alternative approach for the identification of therapeutic targets is the agnostic interrogation of AML genomes for genetic vulnerabilities. In this study we apply a new and technically robust CRISPR-Cas9 platform to perform genome-wide screens for genetic vulnerabilities in human cancers. To do this, we develop and validate a CRISPR-based functional genomics toolkit composed of: i) lentiviral gRNA expression vectors harbouring an improved sgRNA scaffold, ii) Cas9 activity reporters for choosing cell line clones with high Cas9 nuclease activity and iii) an improved human genome-wide CRISPR library composed of 90,709 gRNAs targeting 18,010 genes. We first describe the timescale over which cells lacking individual essential genes are depleted from a pool of isogenic cells, thus providing the first such genome-wide framework for mammalian cells. As well as being of fundamental interest, such a temporal framework can be used to decide the length of time required for performing genetic screens and to select therapeutic targets. We then proceeded to perform drop-out screens with 30-day latencies in 5 AML cell lines (MV4-11, MOLM-13, OCI-AML2, OCI-AML3 and HL-60) and also in the non-AML lines HT-29 (colorectal adenocarcinoma) and HT-1080 (fibrosarcoma). Drop-out genes were identified using the MAGeCK algorithm as those showing significant depletion across their ≥5 cognate sgRNAs. From each cell line, more than 1,000 genes dropped out at FDR 〈 20%, with the exception of MV4-11 where the number was slightly lower. Using these data we identified 881 "pan-essential genes" defined as those displaying significant depletion across ≥5 cell lines including HT-29 and HT-1080. These 881 genes can be used as a standard set of quality-control genes for future screens. Of these, 335 genes were depleted in all 7 cell lines, showing remarkable consistency across different cellular contexts. Next, we looked for genes that are specifically essential to AML cells by extracting genes depleted in at least 1 of the 5 AML cell lines, but not in HT-29 or HT-1080. This analysis identified approximately 150-200 essential genes for each cell line yielding a total of 510 AML-specific genes. Of these, 59 genes including RUNX1, CEBPA, CEBPB, MEN1, DOT1L and SMARCB1 were essential to 3 or more AML cell lines. GO analysis of these 59 genes showed particular enrichment in processes pertaining to chromatin modification and organisation, transcriptional regulation and nucleotide metabolism. We proceed to validate a number of novel drop-out genes using CRISPR-Cas9 with new sgRNAs and where possible with existing clinical/pre-clinical inhibitors. Furthermore, we identify oncogene-specific cell vulnerabilities, even for leukaemias driven by closely related oncogenes such as the MLL-AF4 (MV4-11) and MLL-AF9 (MOLM-13) fusion genes, which differed in their dependency on several genes including KAT2A and SRPK1. To validate these findings in primary cells, we generate a novel Rosa26-Ef1a-Cas9 mouse model and cross this with mice carrying Flt3-ITD. We then transformed Lin- haemopoietic cells from RosaCas9/+/Flt3ITD/+ mice using MLL-AF4- or MLL-AF9 -expressing retroviruses and validate the findings of our screens using sgRNAs against murine Kat2a and Srpk1. Taken together, these data dissecting the individual vulnerabilities of highly similar initiating mutations demonstrate the power of our screen to identify specific vulnerabilities for individual oncogenes and suggest that similar screens may also help to guide programmes of personalised medicine for patients based on the complement of somatic mutations within their cancer, which in some cases could be achieved through re-purposing of existing therapeutics. Disclosures McDermott: 14M Genomics: Other: co-founder, stock-holder and consultant.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages