Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Behavioral Neuroscience Vol. 15 ( 2021-7-20)
    In: Frontiers in Behavioral Neuroscience, Frontiers Media SA, Vol. 15 ( 2021-7-20)
    Abstract: Navigating animals combine multiple perceptual faculties, learn during exploration, retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression of their current needs and motivations. Navigation in insects has been linked to a variety of underlying strategies such as path integration, view familiarity, visual beaconing, and goal-directed orientation with respect to previously learned ground structures. Most works, however, study navigation either from a field perspective, analyzing purely behavioral observations, or combine computational models with neurophysiological evidence obtained from lab experiments. The honey bee ( Apis mellifera ) has long been a popular model in the search for neural correlates of complex behaviors and exhibits extraordinary navigational capabilities. However, the neural basis for bee navigation has not yet been explored under natural conditions. Here, we propose a novel methodology to record from the brain of a copter-mounted honey bee. This way, the animal experiences natural multimodal sensory inputs in a natural environment that is familiar to her. We have developed a miniaturized electrophysiology recording system which is able to record spikes in the presence of time-varying electric noise from the copter's motors and rotors, and devised an experimental procedure to record from mushroom body extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined with a reconstruction of the animal's visual perception and find that the neural activity of MBENs is linked to sharp turns, possibly related to the relative motion of visual features. This method is a significant technological step toward recording brain activity of navigating honey bees under natural conditions. By providing all system specifications in an online repository, we hope to close a methodological gap and stimulate further research informing future computational models of insect navigation.
    Type of Medium: Online Resource
    ISSN: 1662-5153
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2452960-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Journal of Biomedical Informatics Vol. 137 ( 2023-01), p. 104257-
    In: Journal of Biomedical Informatics, Elsevier BV, Vol. 137 ( 2023-01), p. 104257-
    Type of Medium: Online Resource
    ISSN: 1532-0464
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2057141-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    JMIR Publications Inc. ; 2023
    In:  Journal of Medical Internet Research Vol. 25 ( 2023-3-27), p. e42289-
    In: Journal of Medical Internet Research, JMIR Publications Inc., Vol. 25 ( 2023-3-27), p. e42289-
    Abstract: Data provenance refers to the origin, processing, and movement of data. Reliable and precise knowledge about data provenance has great potential to improve reproducibility as well as quality in biomedical research and, therefore, to foster good scientific practice. However, despite the increasing interest on data provenance technologies in the literature and their implementation in other disciplines, these technologies have not yet been widely adopted in biomedical research. Objective The aim of this scoping review was to provide a structured overview of the body of knowledge on provenance methods in biomedical research by systematizing articles covering data provenance technologies developed for or used in this application area; describing and comparing the functionalities as well as the design of the provenance technologies used; and identifying gaps in the literature, which could provide opportunities for future research on technologies that could receive more widespread adoption. Methods Following a methodological framework for scoping studies and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines, articles were identified by searching the PubMed, IEEE Xplore, and Web of Science databases and subsequently screened for eligibility. We included original articles covering software-based provenance management for scientific research published between 2010 and 2021. A set of data items was defined along the following five axes: publication metadata, application scope, provenance aspects covered, data representation, and functionalities. The data items were extracted from the articles, stored in a charting spreadsheet, and summarized in tables and figures. Results We identified 44 original articles published between 2010 and 2021. We found that the solutions described were heterogeneous along all axes. We also identified relationships among motivations for the use of provenance information, feature sets (capture, storage, retrieval, visualization, and analysis), and implementation details such as the data models and technologies used. The important gap that we identified is that only a few publications address the analysis of provenance data or use established provenance standards, such as PROV. Conclusions The heterogeneity of provenance methods, models, and implementations found in the literature points to the lack of a unified understanding of provenance concepts for biomedical data. Providing a common framework, a biomedical reference, and benchmarking data sets could foster the development of more comprehensive provenance solutions.
    Type of Medium: Online Resource
    ISSN: 1438-8871
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2023
    detail.hit.zdb_id: 2028830-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  BMC Medical Informatics and Decision Making Vol. 21, No. 1 ( 2021-12)
    In: BMC Medical Informatics and Decision Making, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-12)
    Abstract: Data sharing is considered a crucial part of modern medical research. Unfortunately, despite its advantages, it often faces obstacles, especially data privacy challenges. As a result, various approaches and infrastructures have been developed that aim to ensure that patients and research participants remain anonymous when data is shared. However, privacy protection typically comes at a cost, e.g. restrictions regarding the types of analyses that can be performed on shared data. What is lacking is a systematization making the trade-offs taken by different approaches transparent. The aim of the work described in this paper was to develop a systematization for the degree of privacy protection provided and the trade-offs taken by different data sharing methods. Based on this contribution, we categorized popular data sharing approaches and identified research gaps by analyzing combinations of promising properties and features that are not yet supported by existing approaches. Methods The systematization consists of different axes. Three axes relate to privacy protection aspects and were adopted from the popular Five Safes Framework: (1) safe data, addressing privacy at the input level, (2) safe settings, addressing privacy during shared processing, and (3) safe outputs, addressing privacy protection of analysis results. Three additional axes address the usefulness of approaches: (4) support for de-duplication, to enable the reconciliation of data belonging to the same individuals, (5) flexibility, to be able to adapt to different data analysis requirements, and (6) scalability, to maintain performance with increasing complexity of shared data or common analysis processes. Results Using the systematization, we identified three different categories of approaches: distributed data analyses, which exchange anonymous aggregated data, secure multi-party computation protocols, which exchange encrypted data, and data enclaves, which store pooled individual-level data in secure environments for access for analysis purposes. We identified important research gaps, including a lack of approaches enabling the de-duplication of horizontally distributed data or providing a high degree of flexibility. Conclusions There are fundamental differences between different data sharing approaches and several gaps in their functionality that may be interesting to investigate in future work. Our systematization can make the properties of privacy-preserving data sharing infrastructures more transparent and support decision makers and regulatory authorities with a better understanding of the trade-offs taken.
    Type of Medium: Online Resource
    ISSN: 1472-6947
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2046490-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Data, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2022-12-21)
    Abstract: Anonymization has the potential to foster the sharing of medical data. State-of-the-art methods use mathematical models to modify data to reduce privacy risks. However, the degree of protection must be balanced against the impact on statistical properties. We studied an extreme case of this trade-off: the statistical validity of an open medical dataset based on the German National Pandemic Cohort Network (NAPKON), which was prepared for publication using a strong anonymization procedure. Descriptive statistics and results of regression analyses were compared before and after anonymization of multiple variants of the original dataset. Despite significant differences in value distributions, the statistical bias was found to be small in all cases. In the regression analyses, the median absolute deviations of the estimated adjusted odds ratios for different sample sizes ranged from 0.01 [minimum = 0, maximum = 0.58] to 0.52 [minimum = 0.25, maximum = 0.91] . Disproportionate impact on the statistical properties of data is a common argument against the use of anonymization. Our analysis demonstrates that anonymization can actually preserve validity of statistical results in relatively low-dimensional data.
    Type of Medium: Online Resource
    ISSN: 2052-4463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2775191-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Data Vol. 7, No. 1 ( 2020-12-10)
    In: Scientific Data, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2020-12-10)
    Abstract: The Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) is a European registry for studying the epidemiology and clinical course of COVID-19. To support evidence-generation at the rapid pace required in a pandemic, LEOSS follows an Open Science approach, making data available to the public in real-time. To protect patient privacy, quantitative anonymization procedures are used to protect the continuously published data stream consisting of 16 variables on the course and therapy of COVID-19 from singling out, inference and linkage attacks. We investigated the bias introduced by this process and found that it has very little impact on the quality of output data. Current laws do not specify requirements for the application of formal anonymization methods, there is a lack of guidelines with clear recommendations and few real-world applications of quantitative anonymization procedures have been described in the literature. We therefore believe that our work can help others with developing urgently needed anonymization pipelines for their projects.
    Type of Medium: Online Resource
    ISSN: 2052-4463
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2775191-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    JMIR Publications Inc. ; 2020
    In:  JMIR mHealth and uHealth Vol. 8, No. 11 ( 2020-11-10), p. e22594-
    In: JMIR mHealth and uHealth, JMIR Publications Inc., Vol. 8, No. 11 ( 2020-11-10), p. e22594-
    Abstract: The novel coronavirus SARS-CoV-2 rapidly spread around the world, causing the disease COVID-19. To contain the virus, much hope is placed on participatory surveillance using mobile apps, such as automated digital contact tracing, but broad adoption is an important prerequisite for associated interventions to be effective. Data protection aspects are a critical factor for adoption, and privacy risks of solutions developed often need to be balanced against their functionalities. This is reflected by an intensive discussion in the public and the scientific community about privacy-preserving approaches. Objective Our aim is to inform the current discussions and to support the development of solutions providing an optimal balance between privacy protection and pandemic control. To this end, we present a systematic analysis of existing literature on citizen-centered surveillance solutions collecting individual-level spatial data. Our main hypothesis is that there are dependencies between the following dimensions: the use cases supported, the technology used to collect spatial data, the specific diseases focused on, and data protection measures implemented. Methods We searched PubMed and IEEE Xplore with a search string combining terms from the area of infectious disease management with terms describing spatial surveillance technologies to identify studies published between 2010 and 2020. After a two-step eligibility assessment process, 27 articles were selected for the final analysis. We collected data on the four dimensions described as well as metadata, which we then analyzed by calculating univariate and bivariate frequency distributions. Results We identified four different use cases, which focused on individual surveillance and public health (most common: digital contact tracing). We found that the solutions described were highly specialized, with 89% (24/27) of the articles covering one use case only. Moreover, we identified eight different technologies used for collecting spatial data (most common: GPS receivers) and five different diseases covered (most common: COVID-19). Finally, we also identified six different data protection measures (most common: pseudonymization). As hypothesized, we identified relationships between the dimensions. We found that for highly infectious diseases such as COVID-19 the most common use case was contact tracing, typically based on Bluetooth technology. For managing vector-borne diseases, use cases require absolute positions, which are typically measured using GPS. Absolute spatial locations are also important for further use cases relevant to the management of other infectious diseases. Conclusions We see a large potential for future solutions supporting multiple use cases by combining different technologies (eg, Bluetooth and GPS). For this to be successful, however, adequate privacy-protection measures must be implemented. Technologies currently used in this context can probably not offer enough protection. We, therefore, recommend that future solutions should consider the use of modern privacy-enhancing techniques (eg, from the area of secure multiparty computing and differential privacy).
    Type of Medium: Online Resource
    ISSN: 2291-5222
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2020
    detail.hit.zdb_id: 2719220-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  GigaScience Vol. 10, No. 10 ( 2021-10-04)
    In: GigaScience, Oxford University Press (OUP), Vol. 10, No. 10 ( 2021-10-04)
    Abstract: Data anonymization is an important building block for ensuring privacy and fosters the reuse of data. However, transforming the data in a way that preserves the privacy of subjects while maintaining a high degree of data quality is challenging and particularly difficult when processing complex datasets that contain a high number of attributes. In this article we present how we extended the open source software ARX to improve its support for high-dimensional, biomedical datasets. Findings For improving ARX's capability to find optimal transformations when processing high-dimensional data, we implement 2 novel search algorithms. The first is a greedy top-down approach and is oriented on a formally implemented bottom-up search. The second is based on a genetic algorithm. We evaluated the algorithms with different datasets, transformation methods, and privacy models. The novel algorithms mostly outperformed the previously implemented bottom-up search. In addition, we extended the GUI to provide a high degree of usability and performance when working with high-dimensional datasets. Conclusion With our additions we have significantly enhanced ARX's ability to handle high-dimensional data in terms of processing performance as well as usability and thus can further facilitate data sharing.
    Type of Medium: Online Resource
    ISSN: 2047-217X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2708999-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages