Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Open Forum Infectious Diseases Vol. 9, No. Supplement_2 ( 2022-12-15)
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 9, No. Supplement_2 ( 2022-12-15)
    Abstract: P. aeruginosa is a cause of hospital-acquired and ventilator-associated pneumonia. Hypermutator P. aeruginosa strains have been described in patients with cystic fibrosis and chronic respiratory infections but are rare in patients with acute P. aeruginosa infection. This case describes a hypermutator strain of P. aeruginosa found in a patient with COVID-19-associated acute respiratory distress syndrome (ARDS). Methods Serial respiratory and blood cultures were collected. Short-read sequencing libraries were prepared using the Illumina Nextera XT kit, and whole-genome sequencing was performed using the Illumina NextSeq platform. Long-read sequencing libraries were prepared from unsheared genomic DNA using ligation sequencing kit SQK-LSK109 and sequenced on the Oxford MinION platform. Single nucleotide variants were identified by aligning reads from each isolate to the complete genome of the first available clinical isolate. Hypermutator assays were performed by measuring the mutation frequency rate for rifampin resistance. Antibiotic minimal inhibitory concentrations (MICs) were performed. Growth curves were performed with a starting OD600 of 0.1 with measurements taken every 30 minutes for 24 hours. Results Seventeen respiratory and five blood isolates were obtained throughout 62 days of hospitalization. Fourteen of the 22 isolates exhibited hypermutator phenotypes by rifampin resistance assays, which demonstrated rapid accumulation of mutations. All five bloodstream isolates were hypermutators. MIC testing noted increased resistance to aminoglycosides, fluoroquinolones, and aztreonam in the hypermutator isolates. All bloodstream isolates descended from a single progenitor noted on whole-genome sequencing. Each hypermutator strain contained a mutation in the mismatch repair gene mutL, previously associated with the hypermutator phenotype. Genetic Tree of Patient Isolates The genetic tree highlights hypermutator versus non-hypermutator single nucleotide variants Conclusion This case was notable for multiple isolates of hypermutator P. aeruginosa that persisted over weeks. The patient’s COVID-19 infection and acute respiratory distress syndrome may have facilitated persistence of the P. aeruginosa lineage, allowing a hypermutator lineage to emerge. Disclosures All Authors: No reported disclosures.
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2757767-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Public Library of Science (PLoS) ; 2021
    In:  PLOS Pathogens Vol. 17, No. 2 ( 2021-2-25), p. e1009248-
    In: PLOS Pathogens, Public Library of Science (PLoS), Vol. 17, No. 2 ( 2021-2-25), p. e1009248-
    Abstract: M and M-like proteins are major virulence factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes . These proteins confer resistance against innate and adaptive immune responses by recruiting specific human proteins to the streptococcal surface. Nonimmune recruitment of immunoglobulins G (IgG) and A (IgA) through their fragment crystallizable (Fc) domains by M and M-like proteins was described almost 40 years ago, but its impact on virulence remains unresolved. These interactions have been suggested to be consequential under immune conditions at mucosal surfaces and in secretions but not in plasma, while other evidence suggests importance in evading phagocytic killing in nonimmune blood. Recently, an indirect effect of Fc-binding through ligand-induced stabilization of an M-like protein was shown to increase virulence. Nonimmune recruitment has also been seen to contribute to tissue damage in animal models of autoimmune diseases triggered by S . pyogenes infection. The damage was treatable by targeting Fc-binding. This and other potential therapeutic applications warrant renewed attention to Fc-binding by M and M-like proteins.
    Type of Medium: Online Resource
    ISSN: 1553-7374
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2021
    detail.hit.zdb_id: 2205412-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages