Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 5224-5224
    Abstract: The splicing of the actin regulator hMENA generates different isoforms and we have demonstrated that the two alternatively expressed isoforms, hMENA11a and hMENAΔv6, have opposite functions in cell invasiveness. This general mechanism is of great clinical relevance in early NSCLC patients, where the pattern of hMENA isoform expression is a powerful prognostic factor. However the mechanism of action of the two isoforms have remained unclear. Herein, we evaluated whether hMENA and its isoforms influence β1 integrin expression and signaling considering the role of this integrin in cancer cell invasiveness and tumor progression. We performed hMENA silencing by siRNA and shRNA, to evaluate by QRT-PCR and biochemical approaches the expression of β1 integrin; by immunofluorescence the MRTF1 localization, by in vivo assay G-Actin/F-Actin ratio and by luciferase reporter assay the SRF activity. β1 integrin activation and signaling was evaluated by flow cytometry using an antibody specific for the β1 active conformation and by biochemical analysis of the phosphorylation of FAK, SRC and Paxillin. The secretoma of hMENA11a transfected cancer cell lines was analyzed by LC-MS/MS. Immunohistochemical analysis was performed using pan-hMENA, hMENA11a, and fibronectin antibodies in primary cancer tissues from node negative NSCLC patients. The Chi-Square or Fisher Exact tests were used to estimate associations among categorical variables and disease-free survival was calculated by the Kaplan-Meier product limit method. We show that the depletion of all hMENA isoforms inhibits the Serum Response Factor (SRF) activity, and the expression of its target gene β1 Integrin, by affecting G-Actin/F-Actin ratio, critical for the nuclear localization of the SRF co-factor myocardin related transcription factor 1 (MRTF1). Furthermore, we provide new insights into the mechanisms involved in the opposite functions of hMENA11a and hMENAΔv6 in cell invasiveness and we identify a new role of these isoforms in the β1 integrin-ECM signalling axis. Indeed, hMENAΔv6-drives cancer cell invasion by increasing β1 integrin activation and signalling, which is reduced by the anti-invasive hMENA11a isoform. Moreover, exogenous expression of hMENA11a in hMENAΔv6 positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including β1 integrin ligands and metalloproteinases. On the other hand overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and favorable clinical outcome of early node-negative non-small cell lung cancer patients. This newly discovered signature, which pays attention to the alternative splicing of hMENA and ECM components such as fibronectin in the stroma, might help fill in the gap in the still controversial clinical management of early node-negative NSCLC patients. Citation Format: Francesca Di Modugno, Sheila Spada, Belinda Palermo, Paolo Visca, Pierluigi Iapicca, Anna Di Carlo, Barbara Antoniani, Isabella Sperduti, Anna Di Benedetto, Irene Terrenato, Marcella Mottolese, Francesco Gandolfi, Francesco Facciolo, Emily Chen, Martin A. Schwartz, Angela Santoni, Mina J. Bissell, Paola Nisticò. hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 5224.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3162-3162
    Abstract: Aberrant activation of the endothelin-1 receptor (ET-1R) elicits pleiotropic effects relevant for serous ovarian cancer (SOC) cell invasion. The network activated by this receptor might be finely, spatially and temporary orchestrated by β-arrestin1 (β-arr1)-driven interactome. Recently, we uncovered a novel role for ET-1R/β-arr1 as regulator of cytoskeletal remodelling and invasive protrusions, invadopodia. Emerging evidence demonstrated that hMENA protein, an Ena/Vasp family member, is a key invadopodia component. In this study, we set out to molecularly dissect whether hMENA might represent a novel interacting partner of β-arr1 necessary for invadopodial function downstream of ET-1R in SOC cells. ENAH mRNA is significantly upregulated in OC tissues, and in particular in high-grade (HG)-SOC tumors, compared with normal tissues. In a panel of SOC cells, the expression hMENA, along with the spliced isoform hMENAΔv6, is upregulated by ET-1, at mRNA and protein levels, through β-arr1, restricted to mesenchymal phenotype. This effect is inhibited by treatment with the dual ETAR/ETBR antagonist macitentan. As shown by biochemical and imaging assays, ET-1 promotes a physical association between hMENA and β-arr1 as well PDZ-RhoGEF, which in turn activate RhoC. Most importantly, ET-1 induces localization of hMENA in F-actin-containing puncta, which co-localize with cortactin, and extracellular matrix degradation sites, thus promoting invadopodia maturation. Silencing of hMENA, as well as of β-arr1, or treatment with macitentan, impairs ET-1-dependent invadopodia activity, MMP secretion and activation, invasion, transendothelial migration and cell plasticity. In vivo, macitentan is able to inhibit SOC metastatic dissemination and hMENA expression along with other invadopodia markers. Finally, high ETAR/ARRB1/ENAH gene expression is associated with a poor prognosis in SOC patients. Collectively, these data define a pivotal function of hMENA/ hMENAΔv6, which is required for ET-1/β-arr1-induced invadopodial function and metastatic spreading of SOC. Citation Format: Valentina Caprara, Francesca Di Modugno, Lidia Chellini, Piera Tocci, Francesca Spadaro, Andrea Sacconi, Giovanni Blandino, Paola Nisticò, Anna Bagnato, Laura Rosanò. Endothelin-1 receptor/beta-arrestin-1 pathway promotes invadopodia and metastatic process by integration with hMENA in human serous ovarian cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3162.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Cancer, Wiley, Vol. 61, No. 1 ( 1995-03-29), p. 142-147
    Type of Medium: Online Resource
    ISSN: 0020-7136 , 1097-0215
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 1995
    detail.hit.zdb_id: 218257-9
    detail.hit.zdb_id: 1474822-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 1482-1482
    Abstract: Deciphering the complexity of the tumor microenvironment (TME)is essential to unveil mechanisms of therapy resistance and develop novel microenvironment-related anti-tumor treatment. Actin cytoskeleton dynamics act as platforms for gene regulation and key signaling transduction pathways involved in the cross-talk among tumor cells and cellular and non-cellular components of TME.The actin regulatory protein hMENA undergoes tissue specific splicing, generating two alternatively expressed isoforms hMENA11a and hMENAΔv6 with a crucial role in EMT. We have previously demonstrated that hMENA11a and hMENAΔv6, respectively inhibit or increase cell invasiveness, TGFβ and β1 integrin signaling and the secretion of several key extracellular matrix (ECM) proteins. Early node-negative NSCLC patients show a prolonged disease-free survival (DFS) when expressing high tumor hMENA11a/low stromal FN1. Tertiary Lymphoid Structures (TLS), sites of transient lymphoid neo-genesis and determinants of antitumor immunity, have been associated with a favorable clinical outcome in NSCLC patientsandfound in responding lesions of ICB-treated melanoma patients. The aim of the present study was to analyzethe pattern ofhMENA isoforms as biomarker of EMT signature in the context of ECM composition and TLS presence and localization. We evaluated by gain and loss of function experiments the role of hMENA isoforms in TLS neogenesis. hMENA isoforms expression, TLS presence and stromal fibronectin were evaluated in 110primary tumors of node negative NSCLC patients by immunohistochemical analysis using pan-hMENA, hMENA11a, CD3, CD20 and fibronectin (FN) antibodies. The Chi-Square or Fisher Exact tests were used to estimate associations among categorical variables. We found, by RNA-SEQ analysisand subsequent validation by QRT-PCR, in NSCLC cell lines depleted for the expression of ‘epithelial’ hMENA11a isoform,that hMENA11asustains the expression of lymphotoxin beta receptor (LTBR), a regulator of TLS formation. The evaluation of TLS presence and spatial distribution in the primary tumors indicatedthat the presence of TLS within the tumor core is significantly correlatedwith hMENA11a expression in tumor cells, whereas the presence of TLS at the margin oftumor nests correlates with the absence of hMENA11a. When we evaluated also the fibronectin we found a trend of association between low stromal fibronectin and intratumoral TLS, however a low level of stromal FN in concomitance with the expression of hMENA11ain tumor cells,strongly associated with intra-tumoralTLS presence. Our findings indicate that the alternative splicing of hMENA is crucial in the reciprocal signaling between tumor cells and their immune microenvironment, by participating in tertiary lymphoid structure neo genesis and spatial distribution. Funded by Airc Citation Format: Francesca Di Modugno, Sheila Spada, Anna Di Carlo, Paola Trono, Isabella Sperduti, Barbara Antoniani, Enzo Gallo, Giulia Campo, Francesco Facciolo, Paolo Visca, Paola Nisticò. Tissue specific splicing program of hMENA: impact on tumor immune microenvironment in node-negative NSCLC [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1482.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 1998
    In:  Zeitschrift für Naturforschung C Vol. 53, No. 9-10 ( 1998-10-1), p. 902-910
    In: Zeitschrift für Naturforschung C, Walter de Gruyter GmbH, Vol. 53, No. 9-10 ( 1998-10-1), p. 902-910
    Abstract: The main linear epitopes of π-glutathione transferase (π-GST, EC 2.5.1.18), an enzyme related to cancer progression in a restricted number of tumours, were identified by testing in ELISA the reactivities of polyclonal anti-π-GST rabbit sera against a panel of 51 overlapping decapeptides, covering the whole 216-residue sequence of the protein. Several major reactivity peaks were detected, each covering two or three adjacent peptides. The most active fragments were then reconstructed by conventional solid-phase synthesis, linked to Sepharose, and used as affinity ligands for isolating specific anti-π-GST antibody subsets. A second group of antisera was then prepared in rabbits by using as immunogens some of the above described synthetic fragments, linked to a carrier protein, and antipeptide antibodies purified by affinity chromatography. An ELISA test was then performed, using as antigens a panel of peptides and different isoforms of GST, in order to establish whether antibodies isolated from total anti-π-GST sera would display higher reactivity and specificity, as compared to traditional antipeptide antibodies. Binding data clearly confirm that the formers might be indeed better reagents for the detection and possibly quantitation of π-GST.
    Type of Medium: Online Resource
    ISSN: 1865-7125 , 0939-5075
    RVK:
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 1998
    detail.hit.zdb_id: 2078107-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 1995
    In:  Zeitschrift für Naturforschung C Vol. 50, No. 9-10 ( 1995-10-1), p. 735-738
    In: Zeitschrift für Naturforschung C, Walter de Gruyter GmbH, Vol. 50, No. 9-10 ( 1995-10-1), p. 735-738
    Abstract: Two multiple antigen peptides consisting of 6 and 7 amino acid residues, respectively, plus a 12-residue fragment, used as a control, all linked to a polylysine core, were used as immunogens in rabbits in order to obtain an immune response. Rabbit antisera against such polymers were then tested in ELISA against a panel of antigens in order to analyze the specificites of the resulting antibodies. The responses were different for all three immunogens, being partially or totally directed, for two of the three compounds, including the 12-residue control MAP peptide, against the polylysyl core, which is considered as non immunogenic. The third MAP polymer was practically unable to elicit an immune response
    Type of Medium: Online Resource
    ISSN: 1865-7125 , 0939-5075
    RVK:
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 1995
    detail.hit.zdb_id: 2078107-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 1997
    In:  JOURNAL OF IMMUNOTHERAPY Vol. 20, No. 6 ( 1997-11), p. 431-436
    In: JOURNAL OF IMMUNOTHERAPY, Ovid Technologies (Wolters Kluwer Health), Vol. 20, No. 6 ( 1997-11), p. 431-436
    Type of Medium: Online Resource
    ISSN: 1524-9557
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1997
    detail.hit.zdb_id: 2048797-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 13_Supplement ( 2015-07-01), p. A60-A60
    Abstract: Background: The pancreatic ductal adenocarcinoma tumor microenvironment plays an important role in promoting the epithelial to mesenchymal transition (EMT), an early event in pancreatic cancer, involved in cancer invasiveness and in tumor progression. Among the stromal components the cancer-associated fibroblasts (CAFs) are responsible for the peculiar pancreatic tumor microenvironment and are known to be linked to the induction of EMT. The EMT process requires a dynamic remodeling of the actin cytoskeleton and we have suggested that the splicing program of hMENA, an actin regulator, play a role in EMT. Two alternatively expressed isoforms, hMENA11a and hMENAΔv6, with opposite functions in invasiveness have been described in breast cancer (Di Modugno et al PNAS 2012). hMENA expression has not been detected in normal pancreatic ducts, whereas expressed in the human pancreatic ductal adenocarcinoma (PDAC) samples, but no data are available on hMENA alternative isoform expression in this neoplasia. The aim of this study is to investigate whether TGFβ1-mediated EMT in pancreatic cancer cells is affected by hMENA overexpression and splicing and how CAFs affect this process in cancer cell lines and in human tissues. Methods: hMENA isoform expression was evaluated in PDAC tissues by immunohistochemistry using isoform specific antibodies. hMENA isoforms and EMT markers expression were characterized in human PDAC cell lines, TGFβ1-treated or untreated, by qRT-PCR and WB analysis. The effects of either hMENA isoform specific knockdown or overexpression in the TGFβ1-induced EMT were also evaluated. Pancreatic CAFs were isolated from human tissues of resected PDAC patients. The effect of the conditioned medium of cultured CAFs was evaluated on hMENA expression. In parallel, the role of CAF-cancer cell interaction on the expression of the different hMENA isoforms was analysed using a co-culture system. Results: Freshly explanted CAFs expressed the “mesenchymal” hMENAΔv6, and not hMENA11a and secreted paracrine factors involved in the induction of hMENA isoforms in tumor cells. In a panel of pancreatic cancer cell lines, hMENA11a expression correlated with an epithelial phenotype, while hMENAΔv6 expression was correlated with a mesenchymal phenotype. Interestingly, the expression of the invasive hMENAΔv6 isoform is specifically up-regulated by TGFβ1 treatment. hMENA isoform expression levels influenced molecular changes induced by TGFβ1. Thus, the hMENA11a specific silencing led to E-cadherin down-regulation that is more evident in TGFβ1 treated cells. On the contrary, hMENA11a overexpression led to a reduction of vimentin expression and to E-cadherin up-regulation. Knockdown of the endogenous hMENA/hMENAΔv6 isoform expression prevented the activation of TGFβ1 signaling and up-regulation of mesenchymal markers. In addition, hMENA/hMENAΔv6 isoform depletion impaired the TGFβ1-induced invasiveness, migration and production of MMPs. IHC analysis of PDAC tissues revealed that the epithelial hMENA11a is rarely expressed in primary pancreatic tumour, while high levels of hMENA and hMENAΔv6 isoforms were found in 75% of primary tumours analysed. Conclusions: This data suggests that the lack of the epithelial hMENA11a isoform is an early event in pancreatic cancer, provides new insights into the role of hMENA splicing in TGFβ1-mediated EMT and highlights hMENA splicing program as an attractive pathway for the development of new therapies in PDAC. Citation Format: Roberta Melchionna, Pierluigi Iapicca, Francesca Di Modugno, Paola Trono, Novella Gualtieri, Maria Grazia Diodoro, Marcella Mottolese, Gian Luca Grazi, Matteo Fassan, Aldo Scarpa, Mina J. Bissell, Paola Nisticò. The hMENA Splicing Program: An important regulator of TGFβ1-driven EMT and invasiveness in pancreatic cancer. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2015;75(13 Suppl):Abstract nr A60.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 4, No. 11_Supplement ( 2016-11-01), p. A113-A113
    Abstract: Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with the worst survival rate among solid cancers. The pressing needs for extending life expectancy of patients are the identification of early prognostic markers and novel druggable pathways. PDAC arises generally from pancreatic intraepithelial neoplasia (PanIN) and a dynamic interactions between tumor, stromal cells and autocrine and paracrine signaling lead to epithelial to mesenchymal transition (EMT), an early process in the natural history of pancreatic cancer. Cytoskeletal reorganization, extracellular matrix (ECM) remodeling, and matrix metalloproteinases (MMPs) contribute to PDAC aggressiveness in cooperation with soluble growth factors or cytokines, with TGF-β1 as crucial player. hMENA is an actin regulatory protein whose splicing program, mediated by the epithelial splicing regulatory proteins (ESRPs), has been associated with the EMT process. Our previous studies indicated that alternative splicing of hMENA, generates hMENA11a and hMENAΔv6 isoforms with opposite roles in cell proliferation and invasion in breast and lung cancers. Alternative splicing is known to play a prominent role in tumor progression and tumorigenesis and the derived isoforms may represent powerful diagnostic and prognostic factors as we have recently shown for hMENA alternative splicing in early stage non-small cell lung cancer (NSCLC). The aim of this study is to investigate the role of TGF-β1 on the expression and function of hMENA isoforms in PDAC, and verify whether the expression pattern of hMENA isoforms may impact patient outcome. Methods: We analyzed the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas, evaluating the patient outcome. The functional role of hMENA isoforms were analyzed by loss and gain of function experiments in untreated and TGF-β1-treated PDAC cell lines. Results: In a panel of pancreatic cancer cell lines, hMENA11a expression correlates with an epithelial phenotype, while hMENAΔv6 expression with a mesechymal phenotype, with low E-cadherin and high vimentin expression. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not cell invasion. TGF-β1 cooperated with β-catenin signalling to up-regulate hMENA and hMENAΔv6 expression but not hMENA11a. The hMENA/hMENAΔv6 up-regulation play a crucial role in cell invasiveness and in TGF-β1-induced EMT. After TGF-β1 treatment, hMENA/hMENAΔv6 were mobilized from focal adhesion to actin stress fibers, and the silencing of these isoforms significantly inhibited the TGF-β1-induced EMT in PANC-1. Functionally, in the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulationis crucial for SMAD2-mediated TGF-β1 signalling, migration, invasion and MMPs activities. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome, in agreement with experimental results. Conclusions: hMENA isoforms are regulated differently by TGF-β1, and the pattern of expression of hMENA isoforms is crucial in TGF-β1-dependent EMT and cell invasion. The pattern of expression of hMENA isoforms correlates with PDAC patient outcome and it could be used in specific clinical settings for the choice of the most effective treatment of PDAC patients. Our data provide new insights into molecular pathways involved in PDAC biology and suggest that hMENA-related pathways are promising targets for the development of new prognostic and therapeutic tools in PDAC. Citation Format: Roberta Melchionna, Pierluigi Iapicca, Francesca Di Modugno, Paola Trono, Isabella Sperduti, Matteo Fassan, Ivana Cataldo, Borislav C. Rusev, Rita T. Lawlor, Maria Grazia Diodoro, Michele Milella, Gian Luca Grazi, Mina J. Bissell, Aldo Scarpa, Paola Nisticò. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr A113.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2732517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Oncotarget, Impact Journals, LLC, Vol. 5, No. 22 ( 2014-11-30), p. 11054-11063
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2560162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages