In:
PLOS Genetics, Public Library of Science (PLoS), Vol. 16, No. 12 ( 2020-12-23), p. e1009259-
Abstract:
Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice ( Rabgef1 -/- ) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1 -/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1 -/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.
Type of Medium:
Online Resource
ISSN:
1553-7404
DOI:
10.1371/journal.pgen.1009259
DOI:
10.1371/journal.pgen.1009259.g001
DOI:
10.1371/journal.pgen.1009259.g002
DOI:
10.1371/journal.pgen.1009259.g003
DOI:
10.1371/journal.pgen.1009259.g004
DOI:
10.1371/journal.pgen.1009259.g005
DOI:
10.1371/journal.pgen.1009259.g006
DOI:
10.1371/journal.pgen.1009259.g007
DOI:
10.1371/journal.pgen.1009259.s001
DOI:
10.1371/journal.pgen.1009259.s002
DOI:
10.1371/journal.pgen.1009259.s003
DOI:
10.1371/journal.pgen.1009259.s004
DOI:
10.1371/journal.pgen.1009259.s005
DOI:
10.1371/journal.pgen.1009259.s006
DOI:
10.1371/journal.pgen.1009259.s007
DOI:
10.1371/journal.pgen.1009259.s008
DOI:
10.1371/journal.pgen.1009259.s009
DOI:
10.1371/journal.pgen.1009259.s010
DOI:
10.1371/journal.pgen.1009259.s011
DOI:
10.1371/journal.pgen.1009259.s012
DOI:
10.1371/journal.pgen.1009259.s013
DOI:
10.1371/journal.pgen.1009259.r001
DOI:
10.1371/journal.pgen.1009259.r002
DOI:
10.1371/journal.pgen.1009259.r003
DOI:
10.1371/journal.pgen.1009259.r004
DOI:
10.1371/journal.pgen.1009259.r005
DOI:
10.1371/journal.pgen.1009259.r006
Language:
English
Publisher:
Public Library of Science (PLoS)
Publication Date:
2020
detail.hit.zdb_id:
2186725-2
Bookmarklink