Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Physiological Reports Vol. 9, No. 8 ( 2021-04)
    In: Physiological Reports, Wiley, Vol. 9, No. 8 ( 2021-04)
    Type of Medium: Online Resource
    ISSN: 2051-817X , 2051-817X
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2724325-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2023
    In:  American Journal of Physiology-Renal Physiology Vol. 324, No. 6 ( 2023-06-01), p. F511-F520
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 324, No. 6 ( 2023-06-01), p. F511-F520
    Abstract: The gut microbiome impacts host gene expression not only in the colon but also at distal sites including the liver, white adipose tissue, and spleen. The gut microbiome also influences the kidney and is associated with renal diseases and pathologies; however, a role for the gut microbiome to modulate renal gene expression has not been examined. To determine if microbes modulate renal gene expression, we used whole organ RNA sequencing to compare gene expression in C57Bl/6 mice that were germ free (lacking gut microbiota) versus conventionalized (gut microbiota reintroduced using an oral gavage of a fecal slurry composed of mixed stool). 16S sequencing showed that male and female mice were similarly conventionalized, although Verrucomicrobia was higher in male mice. We found that renal gene expression was differentially regulated in the presence vs. absence of microbiota and that these changes were largely sex specific. Although microbes also influenced gene expression in the liver and large intestine, most differentially expressed genes (DEGs) in the kidney were not similarly regulated in the liver or large intestine. This demonstrates that the influence of the gut microbiota on gene expression is tissue specific. However, a minority of genes ( n = 4 in males and n = 6 in females) were similarly regulated in all three tissues examined, including genes associated with circadian rhythm ( period 1 in males and period 2 in females) and metal binding ( metallothionein 1 and metallothionein 2 in both males and females). Finally, using a previously published single-cell RNA-sequencing dataset, we assigned a subset of DEGs to specific kidney cell types, revealing clustering of DEGs by cell type and/or sex. NEW & NOTEWORTHY It is unknown whether the microbiome influences host gene expression in the kidney. Here, we utilized an unbiased, bulk RNA-sequencing approach to compare gene expression in the kidneys of male and female mice with or without gut microbiota. This report demonstrates that renal gene expression is modulated by the microbiome in a sex- and tissue-specific manner.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477287-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2022
    In:  Hypertension Vol. 79, No. 10 ( 2022-10), p. 2127-2137
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 79, No. 10 ( 2022-10), p. 2127-2137
    Abstract: The gut microbiome influences host physiology and pathophysiology through several pathways, one of which is microbial production of chemical metabolites which interact with host signaling pathways. Short-chain fatty acids (SCFAs) are a class of gut microbial metabolites known to activate multiple signaling pathways in the host. Growing evidence indicates that the gut microbiome is linked to blood pressure, that SCFAs modulate blood pressure regulation, and that delivery of exogenous SCFAs lowers blood pressure. Given that hypertension is a key risk factor for cardiovascular disease, the examination of novel contributors to blood pressure regulation has the potential to lead to novel approaches or treatments. Thus, this review will discuss SCFAs with a focus on their host G protein-coupled receptors including GPR41 (G protein-coupled receptor 41), GPR43, and GPR109A, as well as OLFR78 (olfactory receptor 78) and OLFR558. This includes a discussion of the ligand profiles, G protein coupling, and tissue distribution of each receptor. We will also review phenotypes relevant to blood pressure regulation which have been reported to date for Gpr41, Gpr43, Gpr109a , and Olfr78 knockout mice. In addition, we will consider how SCFA signaling influences physiology at baseline, and, how SCFA signaling may contribute to blood pressure regulation in settings of hypertension. In sum, this review will integrate current knowledge regarding how SCFAs and their receptors regulate blood pressure.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Function, Oxford University Press (OUP), Vol. 4, No. 2 ( 2023-02-09)
    Type of Medium: Online Resource
    ISSN: 2633-8823
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3040501-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 11 ( 2021-12-16)
    Abstract: Despite recent advances, there is an urgent need for agents targeting HER2-expressing cancers other than breast cancer. We report a phase I study (NCT01730118) of a dendritic cell (DC) vaccine targeting HER2 in patients with metastatic cancer or bladder cancer at high risk of relapse. Patients and Methods Part 1 of the study enrolled patients with HER2-expressing metastatic cancer that had progressed after at least standard treatment and patients who underwent definitive treatment for invasive bladder cancer with no evidence of disease at the time of enrollment. Part 2 enrolled patients with HER2-expressing metastatic cancer who had progressed after anti-HER2 therapy. The DC vaccines were prepared from autologous monocytes and transduced with an adenoviral vector expressing the extracellular and transmembrane domains of HER2 (AdHER2). A total of five doses were planned, and adverse events were recorded in patients who received at least one dose. Objective response was evaluated by unidimensional immune-related response criteria every 8 weeks in patients who received at least two doses. Humoral and cellular immunogenicity were assessed in patients who received more than three doses. Results A total of 33 patients were enrolled at four dose levels (5 × 10 6 , 10 × 10 6 , 20 × 10 6 , and 40 × 10 6 DCs). Median follow-up duration was 36 weeks (4–124); 10 patients completed five doses. The main reason for going off-study was disease progression. The main adverse events attributable to the vaccine were injection-site reactions. No cardiac toxicity was noted. Seven of 21 evaluable patients (33.3%) demonstrated clinical benefit (1 complete response, 1 partial response, and 5 stable disease). After ≥3 doses, an antibody response was detected in 3 of 13 patients (23.1%), including patients with complete and partial responses. Lymphocytes from 10 of 11 patients (90.9%) showed induction of anti-HER2 responses measured by the production of at least one of interferon-gamma, granzyme B, or tumor necrosis factor-alpha, and there were multifunctional responses in 8 of 11 patients (72.7%). Conclusions The AdHER2 DC vaccine showed evidence of immunogenicity and preliminary clinical benefit in patients with HER2-expressing cancers, along with an excellent safety profile. It shows promise for further clinical applications, especially in combination regimens.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages