Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 15, No. 18 ( 2023-09-07), p. 4416-
    Abstract: Soil sand particles play a crucial role in soil erosion because they are more susceptible to being detached and transported by erosive forces than silt and clay particles. Therefore, in soil erosion assessment and mitigation, it is crucial to model and predict soil sand particles at unsampled locations using appropriate methods. The study was aimed to evaluate the ability of a multivariate approach based on non-stationary geostatistics to merge LiDAR and visible-near infrared (Vis-NIR) diffuse reflectance data with laboratory analyses to produce high-resolution maps of soil sand content. Remotely sensed, high-resolution LiDAR-derived topographic attributes can be used as auxiliary variables to estimate soil textural particle-size fractions. The proposed approach was compared with the commonly used univariate approach of ordinary kriging to evaluate the contribution of auxiliary variables. Soil samples (0–0.20 m depth) were collected at 135 locations within a 139 ha forest catchment with granitic parent material and subordinately alluvial deposits, where soils classified as Typic Xerumbrepts and Ultic Haploxeralf crop out. A number of linear trend models coupled with different auxiliary variables were compared. The best model for predicting sand content was the one with elevation derived from LIDAR data as the only auxiliary variable. Although the improvement in estimation over the univariate model was rather marginal, the proposed approach proved very flexible and scalable to include any type of auxiliary variable. The application of LiDAR data is expected to expand as it allows the high-resolution prediction of soil properties, generally insufficiently sampled, at different spatial scales.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 13, No. 21 ( 2021-10-23), p. 4265-
    Abstract: Timber assortments are some of the most important goods provided by forests worldwide. To quantify the amount and type of timber assortment is strongly important for socio-economic purposes, but also for accurate assessment of the carbon stored in the forest ecosystems, regardless of their main function. Terrestrial laser scanning (TLS) became a promising tool for timber assortment assessment compared to the traditional surveys, allowing reconstructing the tree architecture directly and rapidly. This study aims to introduce an approach for timber assortment assessment using TLS data in a mixed and multi-layered Mediterranean forest. It consists of five steps: (1) pre-processing, (2) timber-leaf discrimination, (3) stem detection, (4) stem reconstruction, and (5) timber assortment assessment. We assume that stem form drives the stem reconstruction, and therefore, it influences the timber assortment assessment. Results reveal that the timber-leaf discrimination accuracy is 0.98 through the Random Forests algorithm. The overall detection rate for all trees is 84.4%, and all trees with a diameter at breast height larger than 0.30 m are correctly identified. Results highlight that the main factors hindering stem reconstruction are the presence of defects outside the trunk, trees poorly covered by points, and the stem form. We expect that the proposed approach is a starting point for valorising the timber resources from unmanaged/managed forests, e.g., abandoned forests. Further studies to calibrate its performance under different forest stand conditions are furtherly required.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Geosciences, MDPI AG, Vol. 10, No. 8 ( 2020-08-12), p. 309-
    Abstract: Shallow landslides are an increasing concern in Italy and worldwide because of the frequent association with vegetation management. As vegetation cover plays a fundamental role in slope stability, we developed a GIS-based model to evaluate the influence of plant roots on slope safety, and also included a landslide susceptibility map. The GIS-based model, 4SLIDE, is a physically based predictor for shallow landslides that combines geological, topographical, and hydrogeological data. The 4SLIDE combines the infinite slope model, TOPMODEL (for the estimation of the saturated water level), and a vegetation root strength model, which facilitates prediction of locations that are more susceptible for shallow landslides as a function of forest cover. The aim is to define the spatial distribution of Factor of Safety (FS) in steep-forested areas. The GIS-based model 4SLIDE was tested in a forest mountain watershed located in the Sila Greca (Cosenza, Calabria, South Italy) where almost 93% of the area is covered by forest. The sensitive ROC analysis (Receiver Operating Characteristic) indicates that the model has good predictive capability in identifying the areas sensitive to shallow landslides. The localization of areas at risk of landslides plays an important role in land management activities because landslides are among the most costly and dangerous hazards.
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655946-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Canadian Journal of Forest Research, Canadian Science Publishing, Vol. 51, No. 12 ( 2021-12), p. 1766-1780
    Abstract: Accurate measurement of forest growing stock is a prerequisite for implementing climate-smart forestry strategies. This study deals with the use of airborne laser scanning data to assess carbon stock at the tree level. It aims to demonstrate that the combined use of two unsupervised techniques will improve the accuracy of estimation supporting sustainable forest management. Based on the heterogeneity of tree height and point cloud density, we classified 31 forest stands into four complexity categories. The point cloud of each stand was further divided into three horizontal layers, improving the accuracy of tree detection at tree level for which we calculated volume and carbon stock. The average accuracy of tree detection was 0.48. The accuracy was higher for forest stands with lower tree density and higher frequency of large trees, as well as a dense point cloud (0.65). The prediction of carbon stock was higher with a bias ranging from –0.3% to 1.5% and a root mean square error ranging from 0.14% to 1.48%.
    Type of Medium: Online Resource
    ISSN: 0045-5067 , 1208-6037
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1473096-0
    SSG: 23
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Plants, MDPI AG, Vol. 11, No. 22 ( 2022-11-09), p. 3026-
    Abstract: Urban agriculture is an emerging challenge. Identifying suitable agrosystems that allow for the multiple functions of urban agriculture represents a key issue for the reinforcement of the agricultural matrix in cities, with the aims of counteracting and adapting to climate change and providing economic and social benefits. This study aims to produce a preliminary assessment of the adaptability of Italian native and non-native Vitis vinifera L. cultivars to the stressors of an urban environment. The investigation was carried out on the grapevine collection of the Botanical Garden of Rome (“Vigneto Italia”). A total of 15 grapevine varieties were selected for the evaluation of leaf chlorophyll content, stomatal conductance, and chlorophyll fluorescence under abiotic conditions during the growing season of 2021. Spectral signatures were collected from mature leaves, and several vegetation indices (LWI, MCARI, and WBI) were calculated. Our preliminary results highlighted differences in the behavior of the grapevine cultivars. The native ones showed a medium-high level for leaf chlorophyll content (greater than 350 mol m−2), good photosynthetic efficiency (QY 〉 0.75), and optimal stomatal behavior under drought stress (200 〉 gs 〉 50 mmol H2O m−2 s−1). The data allowed for the classification of the tested genotypes based on their site-specific resistance and resilience to urban environmental conditions. The grapevine proved to be a biological system that is highly sensitive to climate variables, yet highly adaptable to limiting growing factors.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: BIO Web of Conferences, EDP Sciences, Vol. 44 ( 2022), p. 05001-
    Abstract: The transition towards more resilient and sustainable agricultural systems must start from smallholder farms (SHs), that are responsible for one third of total crop production, are crucial to preserve ecosystems services, but are restive to adopt precision viticulture (PV) tools because benefits are considered insufficient to justify the costs. PV could help SHs to face with climate variability, maintaining high quality standards in the vineyard and to increase grapevine resilience adopting strategic cultural practices. This paper focus on evaluating some canopy management techniques (leaf removal at different phenological stages) on Italian grapevine landraces through field survey and UAV remote sensing, to obtain an automated estimation of the vine status in terms of canopy architecture, vine vigour, and berry traits. Findings showed as the adoption of canopy management practices, like the leaf removal, can increase the productive performance of the vines by regulating canopy growth, improving berry quality, and at the same time can increase the environmental sustainability of viticulture. Remote sensing restores a real-time vegetational indices (VIs) at vine scale that SHs could use to maximize quality and sustainability through a more efficient and site-specific management of the vineyard.
    Type of Medium: Online Resource
    ISSN: 2117-4458
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2673408-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Land Degradation & Development, Wiley, Vol. 31, No. 7 ( 2020-04-30), p. 801-815
    Abstract: Olive groves are key elements of the Mediterranean basin landscape. In southern Italy, olive polycultural systems are predominant over specialized ones. These systems occupy marginal and inner areas and are highly susceptible to abandonment. Their ecological functions in sensitive semi‐arid Mediterranean areas have not been studied enough. The purpose of this study was to address the measurable environmental benefits of olive‐based agroforestry systems in terms of (a) landscape structure, transformation, and degradation risk caused by landslides and wildfires; (b) soil quality; and (c) environmental quality. Land structure and land vulnerability layers (soil consumption, landslides and wildfires, and soil fertility loss) and spatial data analyses were performed in a QGIS environment. The land transformation over a recent period (1990–2012) was analysed, and the ecological role of modern and traditional olive grove assets, their impact on landscape quality and their soil carbon storage in agricultural, forested, and semi‐natural areas were quantified. Rapid land cover change leads to land rewilding, affecting the stability of sloping areas due to the increase in transitional re‐naturalized areas following agricultural abandonment. Under these harsh environmental conditions, traditional olive‐based agroforestry systems are widespread and resilient agricultural approaches that are able to preserve habitat diversity, landscape complexity, and soil health. Extensive sustainable agricultural management may be a pivotal strategy for counteracting land degradation phenomena, such as landslides, wildfires, and the uncontrolled re‐naturalization of terraced systems in the Mediterranean. The olive‐based agroforestry systems may become smart agricultural landscapes for multipurpose agriculture, forest uses, and for the preservation of lots of ecological services.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Forests, MDPI AG, Vol. 10, No. 4 ( 2019-04-17), p. 341-
    Abstract: Plant roots play a key role in stabilizing slopes, particularly in the Mediterranean region, characterized by rough and unstable terrain. However, forest species differ in their stabilizing capacities. The purpose of this study is to fill the gap of knowledge on root biomechanical properties of relevant Mediterranean trees and shrubs in relation to slope stability. Root specimens of typical montane Mediterranean tree and shrub species were sampled in Southern Italy. Root characteristics, such as tensile strength (Tr) and root area ratio (RAR), were assessed from live roots sampled in trenches, while root cohesion was calculated. Power law functions yielded the best fit for the relationship of Tr versus root diameter; however, no significant relationship was found between root strength and root moisture content. RAR varied amongst different tree and shrub species. Roots of Quercus cerris L. were the most resistant to breaking under tension, while roots of Ilex aquifolium L. had the highest tensile strength among all shrub species. Results provide quantitative information on the role of root systems of montane Mediterranean forest species in stabilizing soils and will improve modeling of landslide susceptibility to the prevention and mitigation of natural hazards in mountain environments.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Autophagy, Informa UK Limited, Vol. 17, No. 1 ( 2021-01-02), p. 1-382
    Type of Medium: Online Resource
    ISSN: 1554-8627 , 1554-8635
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2262043-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2020
    In:  IOP Conference Series: Materials Science and Engineering Vol. 949, No. 1 ( 2020-11-01), p. 012058-
    In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 949, No. 1 ( 2020-11-01), p. 012058-
    Abstract: Archaeological Heritage, naturally endangered by environmental processes and anthropogenic pressures, is today increasingly at risk, because of intense human activities and climate change, and their impact on atmosphere and soil. European research is increasingly dedicated to the development of good practices for monitoring archaeological sites and their preservation. One of the running projects about these topics is RESEARCH (Remote Sensing techniques for Archaeology; H2020-MSCA-RISE, grant agreement: 823987), started in 2018 and ending in 2022. RESEARCH aims at testing risk assessment methodology using an integrated system of documentation and research in the fields of archaeology and environmental studies. It will introduce a strategy and select the most efficient tools for the harmonization of different data, criteria, and indicators in order to produce an effective risk assessment. These will be used to assess and monitor the impact of soil erosion, land movement, and land-use change on tangible archaeological heritage assets. As a final product, the Project addresses the development of a multi-task thematic platform, combining advanced remote sensing technologies with GIS application. The demonstration and validation of the Platform will be conducted on six case studies located in Italy, Greece, Cyprus, and Poland, and variously affected by the threats considered by the Project. In the frame of RISE (Research and Innovation Staff Exchange), RESEARCH will coordinate the existing expertise and research efforts of seven beneficiaries into a synergetic plan of collaborations and exchanges of personnel (Ph.D. students and research staff), to offer a comprehensive transfer of knowledge and training environment for the researchers in the specific area. This paper aims at illustrating the results of the activities conducted during the first year of the Project, which consisted in developing an effective risk assessment methodology for soil-related threats affecting archaeological heritage, and defining the scientific requirements and the user requirements of the Platform. The activities have been conducted in synergy with all the Partners and were supported by the possibility of staff exchange allowed by the funding frame MSCA-RISE.
    Type of Medium: Online Resource
    ISSN: 1757-8981 , 1757-899X
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2506501-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages