Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 502, No. 2 ( 2021-02-12), p. 2770-2786
    Abstract: We demonstrate that highly accurate joint redshift–stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use the Dark Energy Survey (DES), combined with the COSMOS2015 catalogue for redshifts and stellar masses. We build two ML models: one containing deep photometry in the griz bands, and the second reflecting the photometric scatter present in the main DES survey, with carefully constructed representative training data in each case. We validate our joint PDFs for 10 699 test galaxies by utilizing the copula probability integral transform and the Kendall distribution function, and their univariate counterparts to validate the marginals. Benchmarked against a basic set-up of the template-fitting code bagpipes, our ML-based method outperforms template fitting on all of our predefined performance metrics. In addition to accuracy, the RF is extremely fast, able to compute joint PDFs for a million galaxies in just under 6 min with consumer computer hardware. Such speed enables PDFs to be derived in real time within analysis codes, solving potential storage issues. As part of this work we have developed galpro1, a highly intuitive and efficient python package to rapidly generate multivariate PDFs on-the-fly. galpro is documented and available for researchers to use in their cosmology and galaxy evolution studies.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Vol. 943, No. 1 ( 2023-01-01), p. 56-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 943, No. 1 ( 2023-01-01), p. 56-
    Abstract: We present a new constraint on the Hubble constant H 0 using a sample of well-localized gravitational-wave (GW) events detected during the first three LIGO/Virgo observing runs as dark standard sirens. In the case of dark standard sirens, a unique host galaxy is not identified, and the redshift information comes from the distribution of potential host galaxies. From the third LIGO/Virgo observing run detections, we add the asymmetric-mass binary black hole GW190412 and the high-confidence GW candidates S191204r, S200129m, and S200311bg to the sample of dark standard sirens analyzed in Palmese et al. Our sample contains the top 20% (based on localization) GW events and candidates to date with significant coverage by the Dark Energy Spectroscopic Instrument Legacy Survey. We combine the H 0 posterior for eight dark siren events, finding H 0 = 79.8 − 12.8 + 19.1 km s − 1 Mpc − 1 (68% highest density interval) for a prior in H 0 uniform between [20, 140] km s −1 Mpc −1 . This result shows that a combination of eight well-localized dark sirens combined with an appropriate galaxy catalog is able to provide an H 0 constraint that is competitive (∼20% versus 18% precision) with a single bright standard siren analysis (i.e., assuming the electromagnetic counterpart) using GW170817. When combining the posterior with that from GW170817, we obtain H 0 = 72.77 − 7.55 + 11.0 km s − 1 Mpc − 1 . This result is broadly consistent with recent H 0 estimates from both the cosmic microwave background and supernovae.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages