Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 600-600
    Abstract: Background: A single genomic event is sufficient to cause CML; Ph translocation and the resulting BCR-ABL fusion. Additional genomic lesions accompany progression, which occurs very rapidly after diagnosis (dx) in a minority. Identification at dx of patients (pts) with poor prognosis remains an important goal and new sequencing technology enhances the prospects of uncovering pathologically relevant lesions for early warning of disease progression. Aim: To determine the somatic genomic landscape at dx, the risk conferred by genomic lesions towards blast crisis (BC), and whether mechanisms that underlie CML progression are shared by other malignancies. Method: Sequencing the whole exome (WES) and transcriptome (RNAseq) of paired tumor-normal samples (bone marrow mesenchymal stromal cells or remission) identified somatic single nucleotide variants, indels and gene fusions. Twenty-eight chronic phase (CP) first line imatinib (IM) treated pts were tested: 14 had BC at a median of 9 mo, r 3-60; and 14 had good response (MMR by 6 mo). Also tested were 4 pts diagnosed in advanced phase (2 accelerated phase [AP]; 2 BC) and 5 historical pts with BC at a median of 64 mo, r 38-100. Results: At dx, a median of 33 somatic variants were detected per pt (r 1-62). The number of variants did not correlate with response, or CP vs AP/BC, but increased with age (r =0.48, P =.007), consistent with accumulation of variants in stem cells with aging and suggesting that many may be "passenger mutations". Non synonymous protein coding variants were present at a median of 7 per pt at dx (r 0-17), again without difference between groups. Most variants had an allele frequency close to 50%, indicating their likely presence in all leukemic cells. However, polyclonality at dx was evident by variants with low allele frequency that either expanded or diminished at BC, Fig A. All 4 pts in AP/BC at dx had mutations in genes implicated in cancer pathogenesis (cancer genes) at dx; CBFB-MYH11 fusion, BCORL1, GATA2 and PTPRT, and SMARCA1. Of the 28 pts with first line IM, 11 had 15 somatic and 1 germline non synonymous variants/fusions at dx of known/potential significance: oncogenic mutations in IDH1 (R132H) and TP53 (germline R248Q); 6 frameshift/stop/splice site mutations in ASXL1, 1 EZH2 stop, 1 SETD1B stop, 1 MLL2 frameshift, 1 CHD1 splice site; and 4 novel fusions. Two of the fusions were generated by inversions of 2-13 MB of chr 22: PPM1F-SPECC1L (truncating the protein phosphatase PPM1F) and MYH9-BCR (truncating MYH9, reported to regulate p53 stability). Of these 11 pts, 9 had BC at a median of 6 mo of IM, r 3-39, and 2 had MMR by 6 mo. The 2 good response pts had ASXL1 mutations (both stop) and 1 also had a fusion involving chr 9 and 22 (TNRC6B-NEK6). The frequency of BC in CP pts with potentially pathogenic variants at dx was significantly higher than pts without such variants; 9/11 (82%) vs 5/17 (29%), P =.02. At BC, 18 pts had WES performed. A median of 6 non synonymous variants were gained (r 0-15) including 1-4 mutations in cancer genes in 15/18 pts, Fig B. Six of 13 first line IM pts also had 11 BCR-ABL KD mutations at BC (8 P loop) and 5/6 were among the pts who acquired mutations in cancer genes. The pt with the germline oncogenic TP53 mutation acquired a novel ANKRD11-UBQLN1 fusion at BC at 5 mo. Interestingly, ANKRD11 is a key regulator of the oncogenic potential of this mutation. In total, 6 genes were recurrently mutated; ASXL1, BCORL1, RUNX1, GATA2, MLL and UBE2A. Mutations occurred in genes that primarily belonged to classes mutated in AML, Fig B. Of the 23 AP/BC samples, 22 had non synonymous variants in genes involved in epigenetic regulation/chromatin modification. Variants were also detected in genes involved in ubiquitination and nuclear export, including an XPO1 variant reported in CLL. Nucleocytoplasmic transport has been implicated in IM resistance. Conclusion: Risk of BC was significantly associated with cancer gene mutation or novel fusions at dx. Some mutated pathways in CML were common to other cancers. Epigenetic regulation/chromatin modification appears to play a central role in CML pathogenesis, and ubiquitination and nuclear export may be of emerging relevance. Notably, most pts with BCR-ABL KD mutations at BC also acquired cancer associated mutations, indicating multiple mechanisms may contribute to progression. Future testing at dx will likely include tumor/normal exome/transcriptome sequencing to aid risk stratification. Figure 1. Figure 1. Disclosures Branford: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Research Funding; Qiagen: Membership on an entity's Board of Directors or advisory committees. Yeung:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hughes:ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1219-1219
    Abstract: Introduction The emergence of next generation RNA sequencing (RNA-Seq) technologies will likely advance diagnostic, prognostic and therapeutic strategies for patients (pts) with various cancers.Novel fusions have recently been described in AML and solid tumors using RNA-Seq, and many were out-of-frame.It is not known whether novel fusions are generated at diagnosis (Dx) of CML and if so, their impact on treatment outcome. We used RNA-Seq coupled with whole exome sequencing to identify and characterize novel fusions at Dx of CML and at blast crisis (BC). A highly complex pattern of genomic rearrangements of chromosome (chr) 9 and 22 was found in some pts at Dx that generated novel fusions associated with multiple genomic breaks, multiple non-contiguous deletionsand inversion of genomic sequences, including BCR and ABL. Method RNA-Seqwas performed on Dx samples of chronic phase pts treated with first line TKI representing 2 extreme response groups: 14 pts with BC at a median of 6 months (mos), range 3-25 (group A, poor response), and 16 pts with rapid major molecular response by 3mosof imatinib (group B, optimal response). RNA-Seqwas also performed for 9 of 14 pts at BC (group C).The TruSeq Stranded Total RNA-RiboZero Gold Sample Prep Kit (Illumina) was used. This method enables computation of transcription direction and detection of genomic breaks from precursor RNA. Fusions were identified usingthe STAR algorithm and those detected in 4 normal controls were filtered out. Fusions with a high unique read count, supporting genomic breaks or detection atDxand BC for individual pts were prioritized for validation and their somatic status confirmed by RT-PCR.Correspondingwhole exome sequencingwas conducted for 30 samples. Copy number variation was detected usingSequenzaand exon level resolution ofdeletionswas achieved using an in-house sequence read normalization method. Results BCR-ABL fusions were detected by RNA-Seq in 29/30 pts at Dx and all pts at BC. In addition, novel fusions were identified in eachptgroup. GroupA(poor response). AtDx, 8 cytogenetically cryptic novel fusion transcripts were detected in 4/14 pts, Fig A pts1-4. All fusions involved genes or sequences onchr9 and/or 22 and all 4 pts had concomitant genomic inversion events. Fusion partners included inverted ABL intronic sequences and an inverted intergenic region on chr 22, potentially derived from the generation and activation of cryptic splice sites. BCR was a frequent fusion partner (5/8 fusion transcripts). Genomicdeletionswere detected adjacent to some fusions (3deletionsin 1pt),indicatingdeletionsmay have contributed to fusion formation, Fig B. All 4 pts with novel fusions and inversions had very rapid BC (within 5mosofDx). Group B (optimal response).AtDx, only 1/16 pts had a fusion detected in addition to BCR-ABL: TNRC6B (chr22)-NEK6 (chr9), Fig Apt5. Thisptalso had multiple non-contiguousdeletions: 2 each onchr9 and 22 associated with fusion formation, but no inversions, Fig B. Group C (BC). At BC, 3/9 pts gained fusions. No inversions were detected. Two pts had MLL fusions; MLL-BCAT1 (novel) and MLL-MLLT6. The MLL gene is a known fusion partner in acute leukemia, associated with poor prognosis. Both pts had sudden onset BC after a complete cytogenetic response. These fusions were supported by translocation events detected by cytogenetic analysis;t(11;12)(q23;p12) and t(11;17)(q23;q21). The thirdptgained an out-of-frame ANKRD11-UBQLN1 fusion at BC. Indeed, ANKRD11 expression was reduced by 3-fold at BC. Interestingly, thispthad a germline gain of function TP53 mutation. ANKRD11 is a p53 coactivator and loss of expression defined poor prognosis in breast cancer pts that harbored gain of function p53 mutations (Noll, 2012). The ANKRD11 fusion detected at BC in CML may have been selected with disease progression in the context of mutant p53. Conclusion We identified a subset of pts with novel fusions and inversion events at Dx involvingchr9 and 22. These inversions were detected among the pts studied with very rapid BC. The biological effects of the novel fusions remain to be determined. Our data support the presence of novel fusions, additional to BCR-ABL in CML and add a further layer of genetic heterogeneity associated with the Philadelphia translocation. Whether genomic inversions identify a small subset of CML pts with very poor prognosis requires expanded analysis. Disclosures Yeung: BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Research Funding. Mueller:Ariad: Honoraria; Institute for Hematology and Oncology GmbH: Employment; Bristol-Myers Squibb: Honoraria; Novartis: Honoraria; Pfizer: Honoraria. Dietz:Institute for Hematology and Oncology GmbH: Employment. Ross:Novartis Pharmaceuticals: Honoraria, Research Funding; BMS: Honoraria. Hughes:Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Branford:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Research Funding; Bristol Myers Squibb: Research Funding; Qiagen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 132, No. 9 ( 2018-08-30), p. 948-961
    Abstract: Next-generation sequencing revealed variants in cancer-associated genes at diagnosis of CML more frequently in patients with poor outcomes. All patients at BC had mutated cancer genes, including fusions, that predated BCR-ABL1 kinase domain mutations in a majority.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  American Journal of Medical Genetics Part A Vol. 167, No. 8 ( 2015-08), p. 1872-1876
    In: American Journal of Medical Genetics Part A, Wiley, Vol. 167, No. 8 ( 2015-08), p. 1872-1876
    Abstract: The Allan–Herndon–Dudley syndrome is caused by mutations in the thyroid hormone transporter, Monocarboxylate transporter 8 (MCT8 ). It is characterized by profound intellectual disability and abnormal thyroid function. We report on a patient with Allan–Herndon–Dudley syndrome (AHDS) with profound sensorineural hearing loss which is not usually a feature of AHDS and which may have been due to a coexisting nonsense mutation in Microphthalmia‐associated transcription factor ( MITF ). © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1552-4825 , 1552-4833
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1493479-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Human Mutation, Hindawi Limited, Vol. 37, No. 9 ( 2016-09), p. i-i
    Type of Medium: Online Resource
    ISSN: 1059-7794
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2016
    detail.hit.zdb_id: 1498165-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  The Journal of Molecular Diagnostics Vol. 25, No. 1 ( 2023-01), p. 17-35
    In: The Journal of Molecular Diagnostics, Elsevier BV, Vol. 25, No. 1 ( 2023-01), p. 17-35
    Type of Medium: Online Resource
    ISSN: 1525-1578
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2032654-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Human Mutation, Hindawi Limited, Vol. 37, No. 9 ( 2016-09), p. 955-963
    Type of Medium: Online Resource
    ISSN: 1059-7794
    URL: Issue
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2016
    detail.hit.zdb_id: 1498165-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages