Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diabetes, American Diabetes Association, Vol. 67, No. 11 ( 2018-11-01), p. 2410-2419
    Abstract: Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2018
    detail.hit.zdb_id: 1501252-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 26, No. 1 ( 2020-01), p. 119-188
    Abstract: Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages