Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 158, No. 1 ( 2023-01-07)
    Abstract: Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25–75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: IUCrJ, International Union of Crystallography (IUCr), Vol. 9, No. 2 ( 2022-03-01), p. 231-242
    Abstract: Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.
    Type of Medium: Online Resource
    ISSN: 2052-2525
    Language: Unknown
    Publisher: International Union of Crystallography (IUCr)
    Publication Date: 2022
    detail.hit.zdb_id: 2754953-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages