Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 50, No. 10 ( 2019-10), p. 2829-2834
    Abstract: Rapid reperfusion with mechanical thrombectomy in ischemic strokes with emergent large vessel occlusions leads to significant reduction in morbidity and mortality. The door-in-door-out (DIDO) time is an important metric for stroke centers without an on-site mechanical thrombectomy service. We report the outcome of a continuous quality improvement program to improve the DIDO time since 2015. Methods— Retrospective analysis of consecutive patients transferred out from a metropolitan primary stroke center for consideration of mechanical thrombectomy between January 1, 2015, and October 31, 2018. Clinical records were interrogated for eligible patients with DIDO times and reasons for treatment delays extracted. Results— One hundred thirty-three patients were transferred over the 46-month period. Median DIDO time reduced by 14% per year, from 111 minutes interquartile range (IQR, 98– 142) in 2015 to 67 minutes (IQR, 55–94) in 2018. A median DIDO time of 59 minutes (IQR, 51–80) was achieved in 2018 during working hours (0800–1700 hours). Overall, 65 patients had no documented delays (49%) with a median DIDO time of 75 minutes (IQR, 54–93) and 103 minutes (IQR, 75–143) in those with at least one delay factor documented. Conclusions— A median DIDO time of 〈 60 minutes can be achieved in a primary stroke center.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 1467823-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 9 ( 2021-8-16)
    Abstract: Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients’ survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members ( S100A8 , S100A9 , and S100A12 ) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2737824-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 646-646
    Abstract: Introduction Multiple myeloma (MM) is an incurable malignant plasma cell disease with the highest incidence occurring at 65-70 years of age while 10% of patients are diagnosed below 55 years of age. The International Myeloma Working Group recently proposed new risk stratification standards for MM patients: high-risk (HR), standard (SR) and low-risk (LR) groups (Leukemia 2014, 28, 269−77). Although a median overall survival of LR patients is 〉 10 years from the diagnosis, new drugs and therapeutic innovations are urgently needed for HR patients (20%) who have a median overall survival of only two years. To identify new treatment options for MM patients, we compared ex vivo drug sensitivity data from primary CD138+ cells to standard risk stratification markers. Ex vivo responses indicated a number of investigational drugs as potential novel options for HR MM patients with links to risk markers. Methods Bone marrow aspirates were collected from newly diagnosed (n=14) and relapsed/refractory (n=21) MM patients. Cytogenetics were determined by fluorescence in situ hybridization (FISH) and the patients stratified based on the presence or absence of adverse FISH markers (t(4;14) and 17p del). Plasma cells (CD138+) were enriched from freshly isolated bone marrow samples and exome sequencing performed using DNA extracted from the CD138+ cells and matched skin biopsies. Ex vivo drug sensitivity was assessed by measuring the viability of the cells after 3-day incubation with 306 different oncology drugs in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Scientific Reports 2014, 4, 5193) and select sensitivities determined by comparing results to healthy bone marrow cells. Based on drug sensitivities, the patients were classified in four different groups (sensitive, moderately sensitive, resistant and highly resistant). Results Of the 35 patients included in this study, 11 were classified as HR (31%) and 24 as SR/LR (69%). In the HR group 6/11 (55%) had t(4;14) and 5/11 patients (45%) had 17p13 del. In the SR/LR group common abnormalities included 13 monosomy/13q del (10/24), 1q gain (10/24) and K/NRAS mutation (11/24). Within the HR group, other co-occurring abnormalities included 1q gain (9/11), 13 monosomy/13q del (6/11), K/NRAS mutation (5/11), and TP53 mutation (2/11). Based on overall ex vivo drug sensitivity profiles of all patients, the majority of HR patients were classified as moderately sensitive (8/11; 73%) while SR/LR patients had diverse responses from sensitive to highly resistant. In the HR group, the highest select sensitivities were to BH3 mimetics and PI3K/mTOR inhibitors. While the t(4;14) is predicted to lead to upregulation and increased activity of the FGFR3, which could be targeted by FGFR inhibitors, none of the t(4;14) samples showed sensitivity to these drugs. However, with the exception of one t(4;14) sample, the rest all showed good sensitivity to dual PI3K/mTOR inhibitors, but not to rapalogs, suggesting that inhibition of PI3K and the mTORC1/2 complexes is required to inhibit t(4;14) cell growth rather than mTORC1 alone. Of the 17p del patients, 3/5 were classified as moderately sensitive, 1/5 sensitive and 1/5 highly resistant based on ex vivo drug response of CD138+ cells. All showed select sensitivity to BH3 mimetics/BCL2 inhibitors (navitoclax/ABT-263 and venetoclax/ABT-199/GDC-0199), while response to other drugs varied. Therefore, blocking cell survival signaling is likely essential for this group of HR MM patients. Conclusion By assessing the ex vivo sensitivity of primary plasma cells to a large collection of oncology drugs and comparing these data to standard risk stratification markers for MM, we have been able to identify potential new treatment options for high risk MM patients including dual PI3K/mTOR and BCL2- inhibitors. Although a larger cohort of patients is required to support the correlation between specific drug sensitivities and risk markers, these preliminary data indicate that currently used risk markers may be useful to predict the use of novel treatments. Disclosures Silvennoinen: Janssen-Cilag: Research Funding; Celgene: Research Funding; Janssen-Cilag: Honoraria; Sanofi: Honoraria; Celgene: Honoraria. Porkka:BMS: Honoraria; BMS: Research Funding; Novartis: Honoraria; Novartis: Research Funding; Pfizer: Research Funding. Heckman:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3006-3006
    Abstract: Introduction Response to treatment for multiple myeloma (MM) patients is variable and often unpredictable, which may be attributed to the heterogeneous genomic landscape of the disease. However, the effect of recurrent molecular alterations on drug response is unclear. To address this, we systematically profiled 50 samples from 43 patients to assess ex vivo sensitivity to 308 anti-cancer drugs including standard of care and investigational drugs, with results correlated to genomic alterations. Our results reveal novel insights about patient stratification, therapies for high-risk (HR) patients, signaling pathway aberrations and ex-vivo-in-vivo correlation. Methods Bone marrow (BM) aspirates (n=50) were collected from MM patients (newly diagnosed n=17; relapsed/refractory n=33) and healthy individuals (n=8). CD138+ plasma cells were enriched by Ficoll separation followed by immunomagnetic bead selection. Cells were screened against 308 oncology drugs tested in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Yadav et al, Sci Reports, 2014). MM selective responses were determined by comparing data from MM patients with those of healthy BM cells. Clustering of drug sensitivity profiles was performed using unsupervised hierarchical ward-linkage clustering with Spearman and Manhattan distance measures of drug and sample profiles. Somatic alterations were identified by exome sequencing of DNA from CD138+ cells and skin biopsies from each patient, while cytogenetics were determined by fluorescence in situ hybridization. Results Comparison of the ex vivo chemosensitive profiles of plasma cells resulted in stratification of patients into four distinct subgroups that were highly sensitive (Group I), sensitive (Group II), resistant (Group III) or highly resistant (Group IV) to the panel of drugs tested. Many of the drug responses were specific for CD138+ cells with little effect on CD138- cells from the same patient or healthy BM controls. We generated a drug activity profile for the individual drugs correlating sensitivity to recurrent alterations including mutations to KRAS, DIS3, NRAS, TP53, FAM46C, and cytogenetic alterations del(17p), t(4;14), t(14;16), t(11;14), t(14;20), +1q and -13. Cells from HR patients with del(17p) exhibited the most resistant profiles (enriched in Groups III and IV), but were sensitive to some drugs including HDAC and BCL2 inhibitors. Samples from patients with t(4;14) were primarily in Group II and very sensitive to IMiDs, proteasome inhibitors and several targeted drugs. Along with known recurrently mutated genes in myeloma, somatic mutations were identified in genes involved in several critical signaling pathways including DNA damage response, IGF1R-PI3K-AKT, MAPK, glucocorticoid receptor signaling and NF-κB signaling pathways. The predicted impact of these mutations on the activity of the pathways often corresponded to the drug response. For example, all samples bearing NF1 (DSS=21±7.9) and 67% with NRAS (DSS=15±4.35) mutations showed higher sensitivity to MEK inhibitors compared to healthy controls (DSS=5±.21). However, sensitivity was less predictable for KRAS mutants with modest response only in 47% samples (DSS=7±2.14) . One sample bearing the activating V600E mutation to BRAF showed no sensitivity to vemurafenib, which otherwise has good activity towards V600E mutated melanoma and hairy-cell leukemia. Comparison of the chemosensitive subgroups with survival showed patients in Groups I and IV had high relapse rate and poor overall survival. The ex vivo drug sensitivity results were used to decide treatment for three HR patients with results showing good ex vivo -in vivo correlation. Summary Our initial results suggest that ex vivo drug testing and molecular profiling of MM patients aids stratification. Grouping of patients based on their ex vivo chemosensitive profile proved extremely informative to predict clinical phenotype and identify responders from non-responders. While some molecular markers could be used to predict drug response, others were less predictive. Nevertheless, ex vivo drug testing identified active drugs, particularly for HR and relapsed/refractory patients, and is a powerful method to determine treatment for this group of patients. Disclosures Silvennoinen: Genzyme: Honoraria; Sanofi: Honoraria; Janssen: Research Funding; Celgene: Research Funding; Research Committee of the Kuopio University Hospital Catchment Area for State Research Funding, project 5101424, Kuopio, Finland: Research Funding; Amgen: Consultancy, Honoraria. Porkka:Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Novartis: Honoraria; Pfizer: Honoraria. Heckman:Celgene: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3351-3351
    Abstract: Introduction Multiple myeloma (MM) is a heterogeneous disease that eventually becomes resistant to therapy. Determining the genomic lesions driving each stage of the tumor and identifying actionable items for novel targeted drugs will improve and increase therapeutic options for the malignancy. The aim of the present work is to obtain a comprehensive catalog of driver genomic lesions for both newly diagnosed (NDMM) and refractory/relapsed MM (RRMM) patients by integrating multiple genomic data and linking these to the action of targeted therapeutic approaches. Methods Molecular cytogenetics was assessed by fluorescence in situ hybridization and somatic mutations and copy number changes were identified by performing exome sequencing of DNA from CD138+ cell and skin paired samples collected from 30 MM patients (NDMM n=12; RRMM n=18). In addition, gene expression profiles were obtained by transcriptome sequencing. The proportion of tumor clones bearing a specific mutation was inferred from the variant allele frequency. Genetic alterations involved in the tumorigenesis of each patient (named drivers) were identified by combining an in silico method aimed to score their potential for being malignant with the a priori knowledge retrieved from the identification of complementary signals of positive selection in available tumor cohorts (Tamborero et al. Nat Sci Rep 2013). Selective drug response was assessed by testing the ex vivo sensitivity of patient derived CD138+ cells to 306 oncology drugs and comparing results with responses derived from healthy bone marrow control cells. Results Overall, 0.5 translocations, 3±2.8 mutations and 4.9±2.7 copy number changes per patient were identified as putative drivers. The total number of driver alterations did not differ between NDMM and RRMM samples, and no gene reached statistical significance for being more frequently altered in the latter group. However, the only mutations in RAS genes that appeared at sub-clonal proportions occurred in diagnosed samples, pointing out their positive selection among relapsed patients in which they were present in all clones. Translocations involving IGH@ were observed in 11 (37%) patients, and interestingly 3 other samples exhibited driver alterations in the oncogenes involved in these fusions (i.e. activating mutations in FGFR3 or gene amplification plus peaked overexpression of WHSC1 and CCND1). Recurrent alterations were observed among genes previously associated with MM, including DIS3 (n=15), KRAS (n=11), CYLD (n=8), TRAF3 (n=6) and FAM46C (n=5). Other genes not previously associated with or less-known to be involved in MM pathogenesis were also identified, including the histone methyltransferase MLL, the tumor necrosis factor associated genes FAF1 and TNFRSF13B, the p53-suppressing protein phosphatase PPM1D, and several genes related with blood cell differentiation and B-lymphocyte development (e.g. SOX7, BLK and PRDM1). Overall, the pathways most frequently targeted by driver alterations were MAPK (23 (77%) samples, mostly by mutations), NF-κB (17(57%) samples, mostly by gene copy loss), cell-cycle (18 (60%) samples), and RNA-processing (17 (57%) samples). Comparison of driver lesions to drug response using data derived from ex vivo testing of the same patient samples to different targeted small molecule inhibitors (e.g. PI3K/mTOR and MEK inhibitors) indicated that alterations affecting PI3K and p53 pathways were associated with increased drug sensitivity, while alterations involving activation of FGFR3 and copy loss of TRAF3 were associated with a more resistant phenotype. Conclusions The integration of multiple genomic data by combining different predictive computational tools can comprehensively identify cancer events in individual patients. Applying these tools to genomic data from MM patients identified both known and novel driver lesions, and some of these alterations were associated with the ex vivo response to selective drugs. However, further data is required to confirm biomarkers of response to those novel therapeutics and test potential benefits in MM patients. Disclosures Silvennoinen: Janssen, Sanofi, Celgene: Honoraria; Research Funding of Government Finland, Research Funding from Janssen and Celgene: Research Funding. Porkka:Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Heckman:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2160-2160
    Abstract: Background The t(5;11)(q35;p15.5) translocation resulting in fusion of the nucleoporin NUP98 and methyltransferase NSD1 (NUP98-NSD1) genes is a recurrent aberration observed in pediatric and adult AML. The NUP98-NSD1 fusion often co-occurs with the FLT3-ITD mutation and characterizes a group of cytogenetically normal AML patients with very poor prognosis. Despite advances in the understanding of the biology of NUP98-NSD1-positive AML, its therapeutic success rate has remained low. We aimed to identify novel candidate drugs for NUP98-NSD1-positive AML by testing primary patient cells and in vitro cell models with a high-throughput drug sensitivity platform. Methods Leukemic blasts were Ficoll separated from bone marrow (BM) aspirates of an AML patient positive for t(5;11)(q35;p15.5) and FLT3-ITD. RNA extracted from primary cells was used for RNA sequencing and gene expression analysis. NUP98-NSD1 cDNA was amplified from primary cell RNA and expressed from a lentiviral vector (LeGO-iCer2) also encoding the cerulean fluorescent marker. The NUP98-NSD1/LeGo-iCer2 and empty LeGo-iCer2 viruses were used to establish stably expressing Ba/F3 cell lines. Primary murine (BALB/c) BM cells were transduced with NUP98-NSD1 and FLT3-ITD retroviruses alone or in combination (NNF) in vitro (“preleukemic”) or passaged in vivo (“leukemic”) as previously described (Thanasopoulou et al, 2014). For screening, 309 small molecule inhibitors including FDA/EMA-approved and investigational oncology drugs were plated on 384-well plates in a 10,000-fold concentration range. Cells were dispensed on the pre-drugged plates and incubated at 37°C for 72h, and then cell viability measured using the CellTiter-Glo® luminescent assay. Drug response curves were generated and a drug sensitivity score determined (Yadav et al, 2014). Select drug sensitivity was calculated for each drug by comparing results between primary leukemic and healthy donor BM cells or between the cell constructs and empty vector transduced controls cells. Results Primary patient cells and murine BM cells expressing FLT3-ITD alone or in combination with NUP98-NSD1 were selectively sensitive to specific FLT3 inhibitors (e.g. quizartinib, sorafenib and lestaurtinib), and broad-spectrum receptor tyrosine kinase inhibitors targeting FLT3-ITD (e.g. cabozantinib, crenolanib, foretinib, midostaurin, MGCD-265 and ponatinib). Furthermore, these cells were highly sensitive to checkpoint kinase 1/2- inhibitor AZD7762. The primary murine cells expressing both NUP98-NSD1 and FLT3-ITD showed higher sensitivity to all of the above-mentioned drugs compared to cells expressing either of the events alone indicating functional synergy. A very distinct drug response pattern was observed in the leukemic NNF cells cultured in vivo compared to the same cells cultured in vitro suggesting that microenvironment may also affect the observed drug responses. Interestingly, the preleukemic murine cells expressing NUP98-NSD1 with or without FLT3-ITD as well as the primary patient cells showed extreme vulnerability to BCL2/BCL-xL inhibitor navitoclax. Furthermore, primary murine cells expressing NUP98-NSD1 alone showed high select sensitivity to JAK-inhibitors ruxolitinib, BMS-911543, AZD1480 and tofacitinib indicating the fusion may stimulate JAK/STAT-signaling. Similar sensitivity was also observed in the Ba/F3-cells expressing NUP98-NSD1. In support of these findings, gene expression analyses showed high expression of anti-apoptotic factors BCL2, BCL-xL and MCL1 in the patient cells. MCL1 is regulated by STAT3 while BCL-xL is regulated by STAT5, which were also highly expressed. Conclusions In summary, we have observed an enhanced response to specific and non-specific FLT3 inhibitors in cells expressing NUP98-NSD1 and FLT3-ITD together compared to cells expressing either of the two alone. This coincides with previous findings that functional co-operation between NUP98-NSD1 and FLT3-ITD is important in AML (Thanasopoulou et al, 2014). We have seen high in-vitro-in-vivo correlation between primary patient cells and murine cells expressing NUP98-NSD1 and FLT3-ITD. Moreover, we have identified potential candidate compounds targeting oncogenic signaling activated by these two events. These data form a basis for clinical evaluation of candidate compounds for NUP98-NSD1-positive AML. Disclosures Porkka: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Heckman:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2046-2046
    Abstract: Introduction New drugs have improved survival for multiple myeloma (MM) patients, however, patient outcome remains highly variable, unpredictable and often very poor. To identify novel treatments and potential biomarkers, we applied high throughput ex vivo drug sensitivity testing combined with exome and transcriptome sequencing to samples collected from newly diagnosed and relapsed MM patients. Integration of results from the different platforms indicated several oncogenic signaling pathways driving drug response and highlighted the importance of a multi-targeted approach for treatment. Methods Bone marrow (BM) aspirates (n=48) were collected from MM patients (newly diagnosed n=14; relapsed/refractory n=26) and healthy individuals (n=8). CD138+ plasma cells were enriched by Ficoll separation followed by immunomagnetic bead selection. Cells were screened against 306 oncology drugs with the drugs tested in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Yadav et al, Sci Reports, 2014). Importantly, MM selective responses were determined by comparing data from MM patients with those of healthy BM cells. Clustering of drug sensitivity profiles was performed using unsupervised hierarchical ward-linkage clustering with Spearman and Manhattan distance measures of drug and sample profiles. Somatic mutations were identified by exome sequencing of DNA from CD138+ cells and skin biopies from each patient, while gene expression profiles were derived from RNA sequencing of CD138+ cells. Results Cluster analysis of drug response profiles segregated the samples into four MM specific groups (Figure). Group I patients (n=12) were highly sensitive to many drugs, including several signal transduction inhibitors such as those targeting PI3K-AKT, MAPK and IGF pathways, as well as HSP90 and BCL2 inhibitors plus epigenetic/chromatin modifiers such as BET and HDAC inhibitors. Group II (n=15) showed a more modest response profile and were moderately sensitive to signal transduction inhibitors and epigenetic modifiers. Group III (n=9) were largely insensitive to most drugs in the panel except for BCL2 and proteasome inhibitors, while group IV (n=3) were resistant to all drugs except BCL2 inhibitors. Many samples were selectively sensitive to navitoclax (55%), dual PI3K/mTOR inhibitors (45%) and aminopeptidase inhibitors (20%), which had little effect on healthy control or MM CD138- cells. Only 33% of the samples responded to glucocorticoids. The majority of samples including healthy BM controls were sensitive to proteasome and CDK inhibitors, suggesting low selective cytotoxicity. However, drug sensitivity profiles of healthy control and CD138- cell populations were distinct from MM CD138+ samples indicating that observed CD138+ drug responses were specific for malignant plasma cells. In addition, we observed that drugs with overlapping target profiles tended to cluster together, indicating sample responses were similar to related drugs. Diagnostic and relapse samples were spread across the different response groups. Samples with mutations to genes involved in PI3K and NF-κB signaling tended to cluster in group I, while most samples with t(4;14) fell in Group II. Samples with RAS mutations were present in all response groups and no correlation with MEK inhibitor sensitivity was observed. 17p deletion samples were also found in all response groups, however, those with additional TP53 mutation tended to have increased drug sensitivity. Summary Our results indicate that PI3K/mTOR, MAPK, IGF1R, NF-κB and cell survival (e.g. BCL2, BCLXL) signaling are important pathways mediating MM ex vivo drug response. This matched with genomic and transcriptomic data, which identified alterations of genes involved in these pathways. Although additional work is needed to correlate ex vivo drug sensitivity with in vivo treatment response, our initial results suggest the possibility that MM patients could be subjected to stratified treatment based on combined ex vivo drug testing and molecular profiling. In addition, these results highlight the multiple signaling pathways active in MM and emphasize the need for improved combination strategies for treatment. Figure: Subgrouping of MM patient samples (I-IV) based on selective drug response profiles. H/D/R denotes healthy, diagnostic and relapse, respectively. Figure:. Subgrouping of MM patient samples (I-IV) based on selective drug response profiles. H/D/R denotes healthy, diagnostic and relapse, respectively. Disclosures Silvennoinen: Research Funding of Finland Government, Research Funding from Janssen-cilag, research funding from Celgene: Research Funding; Janssen-Cilag, Sanofi, Celgene: Honoraria. Wennerberg:Pfizer: Research Funding. Kallioniemi:Medisapiens: Consultancy, Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Heckman:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 2020-2022
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 32-32
    Abstract: Several promising new, targeted agents are being developed for the treatment of AML. The BH3 mimetic venetoclax (ABT-199) is a specific inhibitor of BCL2, with results from a phase 2 study showing transient activity of venetoclax in relapsed/refractory AML (Konopleva et al, 2014). The bone marrow (BM) microenvironment is known to protect AML cells from drug therapy and we showed earlier that conditioned medium (CM) from BM stromal cells applied to AML patient cells conferred resistance to venetoclax, which could be reversed by the addition of the JAK1/2 inhibitor ruxolitinib (Karjalainen et al, 2015). Here, we investigated the mechanisms mediating the BM stromal cell induced resistance to venetoclax and its reversal by ruxolitinib. To identify the soluble factor(s) contributing to stroma-induced protection of BCL2 inhibition, we analyzed the cytokine content of 1) CM from the human BM stromal cell line HS-5, 2) CM from BM mesenchymal stromal cells (MSCs) isolated from AML patients, 3) supernatants from BM aspirates collected from AML patients, and 4) supernatants from BM aspirates collected from healthy donors. Although expression levels varied, the cytokines detected were similar among the different samples. In HS-5 CM, IL-6, IL-8 and MIP-3α were among the most abundant cytokines. In addition, gene expression analysis showed the receptors for these cytokines were expressed in AML patient samples. IL-6, IL-8 and MIP-3α were added individually to mononuclear cells collected from AML patients, which were then treated with venetoclax. However, none of the cytokines alone could mimic the reduced sensitivity to venetoclax conferred by the HS-5 CM suggesting that stromal cell induced cytoprotection is likely multi-factorial. Next we tested the effect of AML-derived BM MSCs on the ex vivo response of AML patient samples (n=8) to ruxolitinib or venetoclax alone or in combination in a co-culture setting. Apoptosis assays showed negligible effects of ruxolitinib at a concentration of 300 nM, while venetoclax at a dose of 100 nM induced reduction in the percentage of CD34+ AML cells. Co-treatment with venetoclax and ruxolitinib demonstrated synergistic effects in 6 out of 8 samples and significantly reduced the number of CD34+ AML cells. Mechanistic studies showed that ruxolitinib treatment inhibited the BM stromal medium-induced expression of BCL-XL mRNA on AML cells and the drugs in combination down-regulated BCL2, MCL1 and BCL-XL protein expression, which was in correlation with sensitivity to the drugs. To further evaluate the ability of the venetoclax and ruxolitinib combination to eradicate leukemic cells in vivo we used an orthotopic xenograft model of AML. NSG mice were injected with genetically engineered MOLM-13luc cells and after engraftment treated with venetoclax (25 mg/kg, i.p.), ruxolitinib (50 mg/kg BID, p.o) or both and imaged once per week for 4 weeks. At the end of the treatment period bioluminescent imaging showed significantly reduced leukemia burden in the ruxolitinib and venetoclax co-treated mice compared to controls demonstrating superior anti-tumor efficacy than either agent alone (Figure 1). In summary, our data demonstrate that the combined blockade of JAK/STAT and BCL2 pathways with ruxolitinib and ventoclax is synergistic in ex vivo co-culture models and in vivo in an AML mouse model. The addition of ruxolitinib was able to overcome intrinsic resistance to venetoclax by reducing expression of MCL1, a known escape mechanism of BCL2 inhibition. These results support further clinical investigation of this combination, particularly for relapsed/refractory AML. Disclosures Porkka: Novartis: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Wennerberg:Pfizer: Research Funding. Gjertsen:BerGenBio AS: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees; Kinn Therapeutics AS: Equity Ownership. Heckman:Celgene: Research Funding; Pfizer: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 130, No. 6 ( 2017-08-10), p. 789-802
    Abstract: BM stroma-derived conditions protect AML patient cells against topoisomerase II and BCL2 inhibitors, as well as several classes of TKIs. JAK1/2 inhibitor ruxolitinib reverses cytoprotection against BCL2 antagonist venetoclax, suggesting a novel combinatorial treatment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages