Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
  • 1
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 8, No. Supplement_1 ( 2021-12-04), p. S115-S116
    Abstract: TB meningitis is the most severe form of tuberculosis (TB), associated with high morbidity and mortality. High-dose rifampin (35mg/kg/day) is safe in adults and substantially improves the bactericidal activity of standard TB regimen. However, there is conflicting data regarding its benefit in TB meningitis where outcomes may also be associated with intracerebral inflammatory responses. Methods A novel mouse and a validated rabbit model of TB meningitis utilizing intracranial Mycobacterium tuberculosis infections were used for these studies (Fig. 1). Animals received high-dose (35 mg/kg/day) or standard-dose (10 mg/kg/day) rifampin in combination with isoniazid, pyrazinamide and dexamethasone at human equipotent dosing. Bacterial burden, multi-modality positron emission tomography (PET) imaging, tissue drug concentrations, markers of neuroinflammation, and vascular leak were measured. Imaging data from a patient with TB meningitis was analyzed and correlated with the findings in animals. Figure 1. Mouse model of TB meningitis replicates human histopathology hallmarks. (A) Scheme of infection. (B) Histopathology hematoxylin-eosin (H & E) and acid-fast bacilli (AFB) staining in a representative M. tuberculosis-infected mouse shows regions of meningitis, ventriculitis, choroiditis, necrotizing and non-necrotizing granulomas. The bar represents 100µm. (C) Images show immunofluorescence of microglia activation in red (Iba-1) and nuclear stain in blue (DAPI). The rabbit model of TB meningitis has been described previously (Tucker et al. Dis Model Mech. 2016 and Tucker et al. Sci Transl Med. 2018). Animal studies were approved by the Johns Hopkins Animal Care and Use Committee. Results Administration of the high-dose rifampin regimen achieved four times higher brain concentration than the standard-dose regimen and displayed higher bactericidal activity in both mice and rabbits (P & lt; 0.01) (Fig. 2). There were no differences in intracerebral microglial activation (124I-DPA-713 PET and iDISCO) and pro-inflammatory cytokines during treatment in animals receiving high- or standard-dose rifampin regimens (Fig. 3). Whole-brain PET and immunolabeling demonstrated spatially compartmentalized inflammation, vascular leak and rifampin exposures (Fig. 4). Longitudinal imaging in the same animals showed a 40% decrease in vascular leak after two weeks of TB treatment. Spatially compartmentalized brain rifampin exposures and decreases in vascular edema over TB treatment were also noted in the TB meningitis patient. Figure 2. High-dose rifampin treatment in mouse and rabbit models of TB meningitis. (A) Experimental scheme. R10 (rifampin 10mg/kg), R35 (rifampin 35mg/kg), H (isoniazid), Z (pyrazinamide), D (dexamethasone). (B) Bactericidal activity of high-dose rifampin (n = 60 animals) and standard-dose rifampin (n = 60 animals) regimens in mice. (C) Grouped colony forming units (CFU) and (D) rifampin brain concentration in mice after 42 days of TB treatments. (E) Bactericidal activity of high-dose rifampin (n = 4 animals) and standard-dose rifampin (n = 3 animals) regimens in rabbits. Data from untreated rabbits (n = 2 animals) is also shown. (F) Grouped CFU and (G) rifampin brain concentration in rabbits after 14 days of TB treatments. Tissues were assayed using validated ultra-high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS) for rifampin at the Infectious Diseases Pharmacokinetics Laboratory of the University of Florida. The bacterial burden is represented as CFU per gram of tissue and presented on a logarithmic scale. CFU and mass spectrometry data are represented as mean ± SD. *P & lt; 0.05, **P & lt; 0.01 and ***P & lt; 0.001 calculated using a two-way ANOVA test. Figure 3. Neuroinflammatory responses during TB treatment. (A) Iba-1 and DAPI immunofluorescence in a representative untreated, high-dose and low-dose-treated mouse. (B) Quantification of Iba-1 immunofluorescence before treatment and after 6 weeks of treatment (n = 3 mice per group). Sections were imaged at 40X with Nikon A1+ confocal microscope. HALO was used for visualization and quantification. Quantification of intraparenchymal (C) INF-γ, (D) TNF and (E) MCP-1 in untreated and treated mice (Milliplex Multiplex Luminex assay). (F) Coronal CT and 124I-DPA-713 PET/CT of a representative mouse with TB meningitis before treatment initiation. (G) 124I-DPA-713 PET quantification before treatment (n = 15 animals) and after 2 (n = 5 animals per group) and 6 (n = 5 animals per group) weeks of TB treatment. PET data is represented as median ± IQ. *P & lt; 0.05, **P & lt; 0.01 and ***P & lt; 0.001 were calculated using a two-way ANOVA test. Figure 4. Changes in vascular leakage and rifampin penetration during TB treatment. (A) Experimental scheme in mice. (B) Whole-brain immunolabeling (iDISCO) of a representative M. tuberculosis-infected mouse prior to treatment initiation. Images show immunolabeling of α-smooth muscle actin in grey and microglia activation in red (Iba-1). Asterix represents the areas of vascular amputation. (C) Coronal 18F-py-Albumin PET/CT and quantification (tissue to plasma ratio) in untreated and 2 weeks-treated mice (n = 10 animals at each time-point). (D) Serial imaging in a patient with TB meningitis. (E) Transverse T2 post-contrast section and maximal intensity projection (MIP) showing vasogenic edema. (F) Co-registered T2 post-contrast MIP with transverse 11C-rifampin area under the curve (AUC) heat-map, and 11C-rifampin tissue to plasma ratio quantification of the areas with and without vasogenic edema, and unaffected brain. (G) T2 post-contrast MIP at 3 and 45 months after treatment initiation. The patient with TB meningitis was recruited as part of a 11C-rifampin PET research study performed under the U.S. FDA Radioactive Drug Research Committee program for investigational drugs (Tucker et al. Sci Transl Med. 2018; Ordonez et al. Nat Med. 2020). Human studies were approved by the Johns Hopkins University Institutional Review Board Committee. M = moxifloxacin. PET data is represented as median ± IQ. *P & lt; 0.05, **P & lt; 0.01 and ***P & lt; 0.001 calculated using a two-way ANOVA test. Conclusion Our cross-species findings suggest that an intensified high-dose rifampin regimen is more efficacious than the standard treatment for TB meningitis without an increase in neuroinflammation. Vascular leak decreases during TB treatment and may account for decreases in rifampin permeability over time. These studies have important implications for antimicrobial development for TB meningitis. Disclosures Charles A. Peloquin, Pharm.D., Nothing to disclose Alvaro A. Ordonez, MD, Cubresa (Consultant)Fujirebio Diagnostics (Research Grant or Support) Sanjay K. Jain, MD, Fujirebio Diagnostics, Inc., USA (Research Grant or Support)Novobiotic LLC, USA (Research Grant or Support)T3 Pharma, Switzerland (Research Grant or Support) Sanjay K. Jain, MD, Fujirebio Diagnostics, Inc., USA (Individual(s) Involved: Self): Research Grant or Support; Novobiotic LLC, USA (Individual(s) Involved: Self): Research Grant or Support; T3 Pharma, Switzerland (Individual(s) Involved: Self): Research Grant or Support
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2757767-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Open Forum Infectious Diseases Vol. 8, No. Supplement_1 ( 2021-12-04), p. S642-S642
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 8, No. Supplement_1 ( 2021-12-04), p. S642-S642
    Abstract: Beta-lactams (BL) are the cornerstone of antimicrobial treatment for infections. Beta-lactam therapeutic drug monitoring (BL-TDM) optimizes drug concentrations to ensure maximal efficacy and minimal toxicity. The goals of this study were to describe the implementation process of a BL-TDM program and to further describe our experience using BL-TDM in clinical practice. Methods This was a retrospective review of adult patients with available BL-TDM between January 2016 and November 2019 at the University of Florida (UF) Health Shands Hospital. Total serum concentrations of BL were measured in the Infectious Diseases Pharmacokinetics Lab (IDPL) at UF, using a validated ultrahigh pressure liquid chromatography assay with triple quadrupole mass spectroscopy (LC-MS-MS). At our institution, TDM is available for 11 BLs and in-house assays are performed from Mon-Fri for most BLs. Results A total of 3,030 BL concentrations were obtained. An analysis was performed on the first BL-TDM encounter in 1,438 patients. The median age was 57 years (IQR, 41-69) and the median BMI was 27.5 kg/m2 (IQR, 22.5-34.5). On the day of BL-TDM, the median serum creatinine was 0.83 (IQR, 0.59-1.30). Fifty-one percent of patients (n=735) were in an ICU at the time of BL-TDM with a median SOFA score of 6 (IQR, 3-9). BL-TDM was most frequently performed on cefepime (61%, n=882), piperacillin (15%, n=218), and meropenem (11%, n=151). The BL was administered as a continuous infusion in 211 (15%) patients. An interim analysis of 548 patients showed that BL-TDM was performed a median of 2 days (IQR, 1-4) from the start of BL therapy and resulted in a dosage adjustment in 26% (n=145). Conclusion BL-TDM was performed in older, non-obese patients with normal renal function. Over half of the evaluated patients were in an ICU at the time of TDM. This finding emphasizes the value of BL-TDM in the ICU setting because altered pharmacokinetics during critical illness has been linked to enhanced BL clearance. Interestingly, BL-TDM resulted in dosage adjustment in 1 in 4 patients who were receiving licensed BL dosing regimens, thus highlighting the role of TDM in dose individualization. BL-TDM was performed most commonly within the 72-hours of therapy initiation. Early BL-TDM has been shown to improve patient outcomes and should be promoted. Disclosures Venugopalan Veena, PharmD, Melinta (Other Financial or Material Support, Received a stipend for participation in a drug registry)Merck (Other Financial or Material Support, Received a stipend for participation in a drug registry) Charles A. Peloquin, Pharm.D., Nothing to disclose
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2757767-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Open Forum Infectious Diseases, Oxford University Press (OUP), Vol. 8, No. Supplement_1 ( 2021-12-04), p. S789-S790
    Abstract: Pretomanid is used in combination with bedaquiline and linezolid (BPaL regimen) in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, the penetration of pretomanid in privileged sites remain unknown. Antimicrobial pharmacokinetic (PK) parameters are traditionally derived from clinical samples (blood and cerebrospinal fluid), which may not accurately represent the intralesional tissue PK, affected by drug properties, vascular supply, barrier permeability, and the microenvironment. Methods We developed 18F-pretomanid (chemically identical to pretomanid) for in vivo multi-compartment PK by positron emission tomography (PET). Dynamic 18F-pretomanid PET was used to obtain cross species pretomanid concentration-time profiles in animal models of TB (mice and rabbits) to quantify penetration into pulmonary and brain lesions. A subset of animals underwent PET/CT imaging with 18F-py-albumin and 18F-FDG to assess vascular supply and inflammation. Postmortem 18F-pretomanid autoradiography (high-resolution) and mass spectrometry were performed in infected tissues. A mouse model of TB meningitis was used to evaluate the bactericidal activity of the BPaL regimen (Figure 1). Figure 1. Experimental schematics. (A) A new synthetic approach was developed to obtain radiofluorinated pretomanid (18F-pretomanid), which is chemically identical to pretomanid and therefore undergoes identical PK and metabolism in vivo. Dynamic 18F-pretomanid PET/CT imaging was performed in validated preclinical models of tuberculosis following intravenous administration of 18F-pretomanid. (B) PET signal was quantified in multiple compartments to generate time activity curves (TACs) used to calculate area under the curve (AUC) over 0-60 minutes. A subset of animals also underwent PET/CT imaging of 18F-py-albumin to assess vascular supply to lung and brain lesions, and with 18F-FDG to confirm the presence of neuroinflammation in the mouse and rabbit models of TB meningitis. Tissue resection post-mortem was used to visualize the intralesional retention of 18F-pretomanid using high-resolution (10 µm) autoradiography. The efficacy of the BPaL regimen in TB meningitis was compared to that of standard treatment with rifampin, isoniazid, and pyrazinamide in the mouse model. Mass spectrometry was performed following oral administration of BPaL to determine brain drug levels. (C) These data provide multicompartment PK analysis, intralesional levels of pretomanid, and insights into the mechanism that govern pretomanid tissue distribution. Results 18F-Pretomanid PET provided detailed concentration-time profiles in infected tissues demonstrating excellent lung and brain tissue penetration (AUC ratio to plasma & gt; 1) in both animal species, which was spatially compartmentalized, likely due to differential vascular supply (18F-py-albumin PET) (Figure 2). Brain lesions (identified by 18F-FDG PET) demonstrated localized leakiness on 18F-py-albumin PET. Autoradiography and mass spectrometry corroborated the imaging findings. The efficacy of the BPaL regimen in TB meningitis was substantially lower than standard TB treatment (Figure 3), likely due to restricted penetration of bedaquiline and linezolid into the brain parenchyma. Figure 2. Spatial heterogeneity of 18F-Pretomanid penetration and vascular supply to pulmonary TB lesions. (A) A novel synthetic was devised to obtain 18F-pretomanid, which is chemically identical to pretomanid. (B) Maximum intensity projection (MIP) of 18F-Pretomanid PET/CT in M.tb.-infected mice over 3 hrs shows hepatobiliary and renal excretion, high uptake into brown fat, brain, and lungs. (C) Resection of infected lungs 30 minutes post intravenous administration of 18F-pretomanid shows heterogenous distribution of 18F-pretomanid into the lungs visible by high resolution autoradiography. Areas of pneumonia are identifiable by hematoxylin and eosin (H & E) staining of the same tissue section used for autoradiography. (D) Time-activity curves of 18F-Pretomanid in infected mouse lung (0-3 hours) and derived area under the curve (AUC) ratios to plasma (E) in infected mouse lung. Representative MIP of 18F-pretomanid (F) and 18F-py-albumin (H) PET/CT in a rabbit with cavitary TB and quantification of the AUC ratios to plasma show reduced penetration into lung lesions and cavitary wall compared to areas of unaffected lung (G and I). Data are represented as median ± interquartile range, n=3-4 group. Figure 3. Exposure levels of 18/19F-pretomanid in models of TB meningitis. (A) Experimental timeline used to assess the penetration of pretomanid into infected mouse brain before and during treatment with antimicrobials bedaquiline (B), pretomanid (Pa), and linezolid (L), and corticosteroid dexamethasone (D). (B) Representative three-dimensional MIP of 18F-pretomanid PET/CT in the CNS-TB model, 10 min post-injection, and transverse section showing high and heterogeneous brain uptake. (C) High-resolution autoradiography was performed to confirm heterogeneous penetration of 18F-pretomanid into infected brain lesions in the mouse. (D). 8F-pretomanid AUC ratios of tissue to plasma in mouse brain before (day 0) and two weeks into treatment show a reduction in penetration at week 2. (E). Pretomanid concentrations (µg/mL) in mouse plasma and brain, at day 0 and two weeks into treatment, measured by mass spectrometry and derived concentration ratios of brain to plasma (F) suggest drug accumulation due to the long half-life. (G) While 18F-py-albumin and 18F-FDG PET/CT show vascular leakage and neuroinflammation in the rabbit model of TB meningitis, the penetration of 18F-pretomanid is heterogeneous and reduced at the lesion site (indicated by white arrow). (H) Quantification of the PET signal shows variability within the same animal. Data are represented as median ± interquartile range, n=3-5 group. Figure 4. Evaluation of a pretomanid-containing regimen in TB meningitis. (A) Mice with experimentally induced TB meningitis were treated with Bedaquiline (25 mg/day), Pretomanid (100 mg/day), Linezolid (100 mg/day), and Dexamethasone (2 mg/day) or Rifampin (10 mg/day), Isoniazid (10 mg/day), Pyrazinamide (150 mg/day) and Dexamethasone (2mg/day) for 8 weeks. Treatment efficacy was determined based on the brain bacterial burden after 2, 4, 6, and 8 weeks of treatment. (B) The penetration of 76Br-bedaquiline, 18F-linezolid, and 18F-pretomanid into the brain parenchyma was measured non-invasively by PET and revealed low penetration of 76Br-bedaquiline (AUC radio to plasma 0.15) and 18F-linezolid (AUC radio to plasma 0.3). (C) Mass spectrometry analysis was performed to confirm the brain penetration of bedaquiline, linezolid, and pretomanid following oral administration. Conclusion Dynamic 18F-pretomanid PET provided holistic data on pretomanid exposures showing excellent penetration into infected lung and brain tissues. The BPaL regimen was inferior to standard TB treatment for TB meningitis. Thus, new pretomanid-containing regimens need to be developed for the treatment of MDR-TB meningitis. Disclosures Charles A. Peloquin, Pharm.D., Nothing to disclose Alvaro A. Ordonez, MD, Cubresa (Consultant)Fujirebio Diagnostics (Research Grant or Support) Sanjay K. Jain, MD, Fujirebio Diagnostics, Inc., USA (Research Grant or Support)Novobiotic LLC, USA (Research Grant or Support)T3 Pharma, Switzerland (Research Grant or Support) Sanjay K. Jain, MD, Fujirebio Diagnostics, Inc., USA (Individual(s) Involved: Self): Research Grant or Support; Novobiotic LLC, USA (Individual(s) Involved: Self): Research Grant or Support; T3 Pharma, Switzerland (Individual(s) Involved: Self): Research Grant or Support
    Type of Medium: Online Resource
    ISSN: 2328-8957
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2757767-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Antimicrobial Agents, Elsevier BV, Vol. 59, No. 2 ( 2022-02), p. 106509-
    Type of Medium: Online Resource
    ISSN: 0924-8579
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2011829-6
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: European Journal of Pharmaceutical Sciences, Elsevier BV, Vol. 151 ( 2020-08), p. 105421-
    Type of Medium: Online Resource
    ISSN: 0928-0987
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1483522-8
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 77, No. 7 ( 2023-10-05), p. 1053-1062
    Abstract: Rifampin-resistant tuberculosis is a leading cause of morbidity worldwide; only one-third of persons start treatment, and outcomes are often inadequate. Several trials demonstrate 90% efficacy using an all-oral, 6-month regimen of bedaquiline, pretomanid, and linezolid (BPaL), but significant toxicity occurred using 1200-mg linezolid. After US Food and Drug Administration approval in 2019, some US clinicians rapidly implemented BPaL using an initial 600-mg linezolid dose adjusted by serum drug concentrations and clinical monitoring. Methods Data from US patients treated with BPaL between 14 October 2019 and 30 April 2022 were compiled and analyzed by the BPaL Implementation Group (BIG), including baseline examination and laboratory, electrocardiographic, and clinical monitoring throughout treatment and follow-up. Linezolid dosing and clinical management was provider driven, and most patients had linezolid adjusted by therapeutic drug monitoring. Results Of 70 patients starting BPaL, 2 changed to rifampin-based therapy, 68 (97.1%) completed BPaL, and 2 of the 68 (2.9%) experienced relapse after completion. Using an initial 600-mg linezolid dose daily adjusted by therapeutic drug monitoring and careful clinical and laboratory monitoring for adverse effects, supportive care, and expert consultation throughout BPaL treatment, 3 patients (4.4%) with hematologic toxicity and 4 (5.9%) with neurotoxicity required a change in linezolid dose or frequency. The median BPaL duration was 6 months. Conclusions BPaL has transformed treatment for rifampin-resistant or intolerant tuberculosis. In this cohort, effective treatment required less than half the duration recommended in 2019 US guidelines for drug-resistant tuberculosis. Use of individualized linezolid dosing and monitoring likely enhanced safety and treatment completion. The BIG cohort demonstrates that early implementation of new tuberculosis treatments in the United States is feasible.
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2002229-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 48, No. 12 ( 2009-06-15), p. 1685-1694
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    URL: Issue
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2009
    detail.hit.zdb_id: 2002229-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: American Journal of Respiratory and Critical Care Medicine, American Thoracic Society, Vol. 174, No. 8 ( 2006-10-15), p. 935-952
    Type of Medium: Online Resource
    ISSN: 1073-449X , 1535-4970
    RVK:
    Language: English
    Publisher: American Thoracic Society
    Publication Date: 2006
    detail.hit.zdb_id: 1468352-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 63, No. 7 ( 2016-10-01), p. e147-e195
    Abstract: The American Thoracic Society, Centers for Disease Control and Prevention, and Infectious Diseases Society of America jointly sponsored the development of this guideline for the treatment of drug-susceptible tuberculosis, which is also endorsed by the European Respiratory Society and the US National Tuberculosis Controllers Association. Representatives from the American Academy of Pediatrics, the Canadian Thoracic Society, the International Union Against Tuberculosis and Lung Disease, and the World Health Organization also participated in the development of the guideline. This guideline provides recommendations on the clinical and public health management of tuberculosis in children and adults in settings in which mycobacterial cultures, molecular and phenotypic drug susceptibility tests, and radiographic studies, among other diagnostic tools, are available on a routine basis. For all recommendations, literature reviews were performed, followed by discussion by an expert committee according to the Grading of Recommendations, Assessment, Development and Evaluation methodology. Given the public health implications of prompt diagnosis and effective management of tuberculosis, empiric multidrug treatment is initiated in almost all situations in which active tuberculosis is suspected. Additional characteristics such as presence of comorbidities, severity of disease, and response to treatment influence management decisions. Specific recommendations on the use of case management strategies (including directly observed therapy), regimen and dosing selection in adults and children (daily vs intermittent), treatment of tuberculosis in the presence of HIV infection (duration of tuberculosis treatment and timing of initiation of antiretroviral therapy), as well as treatment of extrapulmonary disease (central nervous system, pericardial among other sites) are provided. The development of more potent and better-tolerated drug regimens, optimization of drug exposure for the component drugs, optimal management of tuberculosis in special populations, identification of accurate biomarkers of treatment effect, and the assessment of new strategies for implementing regimens in the field remain key priority areas for research. See the full-text online version of the document for detailed discussion of the management of tuberculosis and recommendations for practice.
    Type of Medium: Online Resource
    ISSN: 1537-6591 , 1058-4838
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2002229-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Emerging Infectious Diseases, Centers for Disease Control and Prevention (CDC), Vol. 23, No. 3 ( 2017-03), p. 513-516
    Type of Medium: Online Resource
    ISSN: 1080-6040 , 1080-6059
    Language: English
    Publisher: Centers for Disease Control and Prevention (CDC)
    Publication Date: 2017
    detail.hit.zdb_id: 2004375-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages