Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 515-515
    Abstract: Immunotherapies have recently shown efficacy in treatment of aggressive, refractory pediatric B cell acute lymphoblastic leukemia (B-ALL), which remains one of the leading causes of cancer-related death in children. The immune evasion mechanisms of B-ALL are still being explored to discover new therapeutic targets and improve patient outcomes. Recent reports have implicated a role for the molecule Siglec-15 (Sig15) in regulating immune response in solid tumor-infiltrating macrophages. Our lab has found higher expression of SIGLEC15 at the RNA level in primary pediatric B-ALL as compared to healthy donor controls, as well as at the RNA and protein levels across a panel of B-ALL, T cell acute lymphoblastic leukemia (T-ALL), and diffuse large B cell lymphoma (DLBCL) cell lines compared to healthy donor PBMCs. Higher expression of SIGLEC15 in pediatric B-ALL samples from the TARGET database correlates with markers of PKC and NFκB activation known to drive B-ALL leukemogenesis, which we have demonstrated to regulate Sig15 RNA and protein expression in vitro. Knockout of Siglec15 expression in a BCR-ABL1 + murine model of B-ALL engrafted in immunocompetent and Rag1 -/- immunodeficient recipients resulted in leukemia clearance in immunocompetent, but not immunodeficient, recipients and 100% survival (Figure A, p=0.01 Sig15 KO into WT vs. Rag1 -/-). Further study indicates that Siglec15 expression on these leukemia cells suppresses T cell effector and memory population expansion at 7 days post-engraftment (Figure B) and correlates with higher levels of IL-10 and lower levels of CCL17 present in the bone marrow, representing a more immunosuppressive bone marrow milieu. These data suggest a prominent role for Sig15 in the suppression of adaptive immune response to B-ALL as well as other hematological malignancies. We have also reported for the first time the release of a soluble form of Sig15 (sSig15), which we have demonstrated to circulate at higher levels in the plasma of pediatric B-ALL patients compared to healthy donors (Figure C, ****P≤0.0001). Detection of this sSig15 negatively correlated with circulating levels of IL-12 and IL-1α/β (Figure D, depicting correlations of cytokines using Pearson's r), suggesting sSig15 levels correspond to a systemically immunosuppressive phenotype. Flow cytometry of fresh pediatric B ALL cells demonstrates expression of surface Sig15 in a subset of cases. Thus, Sig15 has the capacity to promote immunosuppressive effects at both marrow-localized and systemic levels. Together, these results suggest Siglec-15 is a novel, potent immunosuppressive molecule active in leukemia progression that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Figure 1 Figure 1. Disclosures Abukharma: NextCure Inc.: Current Employment. Liu: NextCure: Current Employment, Current holder of stock options in a privately-held company.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-05-19)
    Abstract: Y-box binding protein 1 ( YBX1 or YB1) is a therapeutically relevant oncoprotein capable of RNA and DNA binding and mediating protein–protein interactions that drive proliferation, stemness, and resistance to platinum-based therapies. Given our previously published findings, the potential for YB1-driven cisplatin resistance in medulloblastoma (MB), and the limited studies exploring YB1-DNA repair protein interactions, we chose to investigate the role of YB1 in mediating radiation resistance in MB. MB, the most common pediatric malignant brain tumor, is treated with surgical resection, cranio-spinal radiation, and platinum-based chemotherapy, and could potentially benefit from YB1 inhibition. The role of YB1 in the response of MB to ionizing radiation (IR) has not yet been studied but remains relevant for determining potential anti-tumor synergy of YB1 inhibition with standard radiation therapy. We have previously shown that YB1 drives proliferation of cerebellar granular neural precursor cells (CGNPs) and murine Sonic Hedgehog (SHH) group MB cells. While others have demonstrated a link between YB1 and homologous recombination protein binding, functional and therapeutic implications remain unclear, particularly following IR-induced damage. Here we show that depleting YB1 in both SHH and Group 3 MB results not only in reduced proliferation but also synergizes with radiation due to differential response dynamics. YB1 silencing through shRNA followed by IR drives a predominantly NHEJ-dependent repair mechanism, leading to faster γH2AX resolution, premature cell cycle re-entry, checkpoint bypass, reduced proliferation, and increased senescence. These findings show that depleting YB1 in combination with radiation sensitizes SHH and Group 3 MB cells to radiation.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2020
    In:  Blood Vol. 136, No. Supplement 1 ( 2020-11-5), p. 6-7
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 6-7
    Abstract: Despite advances that have greatly improved the overall survival of pediatric B cell acute lymphoblastic leukemia (B-ALL), it remains one of the leading causes of cancer-related death in children. Immunotherapy has shown efficacy in treatment of refractory disease, highlighting the need for greater understanding of the immune evasion mechanisms underlying this disease so that additional immune modulating therapeutic strategies can be developed. Siglec-15 (Sig15) was recently reported to have immune modulatory functions in the context of solid tumors. We have found that SIGLEC15 is overexpressed at the RNA level in primary B cell acute lymphoblastic leukemia (B-ALL), acute myelogenous leukemia (AML), and diffuse large B cell lymphoma as compared to healthy donor controls. As compared to healthy donor PBMCs, we have confirmed higher expression of Sig15 at the RNA and protein levels through RT-qPCR, immunoblotting, and flow cytometry across a panel of human B-ALL, AML, DLBCL, and T cell acute lymphoblastic leukemia (T-ALL) cell lines. Knockout of Sig15 expression in a BCR-ABL1+ murine model of B-ALL engrafted in immunocompetent and Rag1-/- immunodeficient recipients resulted in leukemia clearance in immunocompetent, but not immunodeficient, recipients and 100% survival (Figure 1). These data suggest a prominent role for Sig15 in the suppression of adaptive immune response to B-ALL as well as other hematological malignancies. Additional studies suggest that SIGLEC15 expression is positively regulated by NFκB signaling, which is known to be constitutively activated in certain B-ALL subsets. Importantly, we have observed release of a soluble form of Sig15 (sSig15) from B-ALL cells, which is regulated by PKC and calcineurin-mediated signaling. To discover translational application, we measured sSig15 in the plasma of both healthy and pediatric leukemia patients and found significantly higher levels of sSig15 as compared to healthy individuals (Figure 2; LLD = 5 pg/ml; **P & lt;0.01). Together, these results suggest Siglec-15 is a novel and potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate lymphocytes against leukemia cells. Disclosures Abukharma: NextCure, Inc.: Current Employment. Liu:NextCure, Inc.: Current Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2386-2386
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2386-2386
    Abstract: Background: According to the National Cancer Institute, B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancer of children and adolescents (ALL, NCI, PDQ, accessed 8/2/2021). Recently, obesity has been identified as a risk factor which is associated with poor survival outcomes (Butturini et al., 2007; Eissa et al., 2017; Ethier et al., 2012) which is concerning due to the obesity rates in children and adolescents having tripled since the 1970's (Ogden et al., 2006; Ogden et al., 2020). Indeed, survival rates in obese pediatric patients with B-ALL can decline by as much as 30% relative to outcomes observed in lean patients, with obese patients more commonly presenting with treatment-related adverse events (Butturini et al., 2007; Eissa et al., 2017; Ethier et al., 2012). A hallmark of obesity is the accumulation of adipocytes, an endocrine cell type which can promote chemoresistance (Ehsanipour et al., 2013; Sheng et al., 2016; Mittelman., 2021). The mechanistic understanding of how adipocytes promote chemoresistance in B-ALL is still under investigation and further insight into this relationship could lead to the rational design of effective therapeutic strategies for obese patients with limited treatment options. Methods: A cytokine/chemokine array was performed on adipocyte and stromal cell secretomes to identify potential adipocyte-secreted inflammatory mediators, which may promote chemoresistance in human B-ALL cells. Once candidate cytokines were identified, we performed in vitro assays to measure how the addition or neutralization of proteins of interest impacted the proliferation, activation of signaling pathways, steady-state mitochondrial protein levels, and survival of human B-ALL cells in the absence or presence of chemotherapy treatment. Additionally, we mined publicly available databases to determine how protein-coding genes of interest were associated with patient survival. Furthermore, we have used the diet-induced murine model of obesity to determine how targeting candidate cytokines impact B-ALL pathogenesis. Results: We have made the novel finding that interleukin-9 (IL-9) levels are higher in adipose-rich microenvironments and activates pro-survival pathways that promote chemoresistance in human B-ALL cells. We have found that obese mice lacking IL-9 are more resistant to B-ALL development due to significant increases in survival outcomes compared to lean mice transplanted with B-ALL cells. Furthermore, we have discovered that human B-ALL cells upregulate the interleukin-9 receptors (IL-9R) when exposed to the adipocyte secretome. This potential feedback loop may increase the responsiveness of leukemia cells to local IL-9 levels. These observations were supported by our data mining results, which revealed that IL-9R gene expression levels were higher in more aggressive subtypes of B-ALL, including Ph-like B-ALL. When human B-ALL cells were treated with recombinant IL-9 (rIL-9), chemoresistance to methotrexate and doxorubicin was observed. Mechanistically, rIL-9 treatment of human B-ALL cells also downregulated the protein expression of the pro-apoptotic mitochondrial-associated protein Bim and pro-proliferative protein Raf. In all, our experiments have identified IL-9 as an adipocyte-enriched cytokine, which promotes pan-chemoresistance in human B-ALL cells. Furthermore, we have shown that this effect maybe mediated in part by suppressing the protein of expression of pro-apoptotic and proliferative proteins. Conclusions: To our knowledge, our results represent the first reports of IL-9 mediated chemoresistance in human B-ALL and the first to demonstrate that IL-9 regulates the protein homeostasis of anti- and pro-apoptotic mitochondrial proteins. In ongoing studies, we are conducting in vitro and murine studies with parental and IL-9R-deficient B-ALL cells to determine how B-ALL pathogenesis and chemosensitivity are impacted. Subsequent studies will be conducted in lean and obese mice transplanted with B-ALL cells who receive chemotherapy treatment alone or in combination with IL-9 neutralizing antibody administration. Disclosures Lee: PureTech Health: Research Funding. Henry: PureTech Health: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research Communications, American Association for Cancer Research (AACR), Vol. 3, No. 7 ( 2023-07-17), p. 1248-1259
    Abstract: Siglec-15 (Sig15) has been implicated as an immune checkpoint expressed in solid tumor-infiltrating macrophages and is being targeted in clinical trials with mAbs to normalize the tumor immune microenvironment and stimulate antitumor immunity. However, the role of Sig15 in hematologic malignancies remains undefined. Sig15 mRNA and protein expression levels in hematologic malignancies were determined from publicly available databases, cell lines, and primary patient samples. Human B-cell acute lymphoblastic leukemia (B-ALL) cell lines were used to identify signaling pathways involved in the regulation of Sig15 expression. Secreted/soluble Sig15 and cytokine levels were measured from the plasma of children with leukemia and healthy controls. Knockdown and knockout of Siglec15 in a murine model of B-ALL was used to evaluate the effect of leukemia-derived Sig15 on the immune response to leukemia. We observed pathologic overexpression of Sig15 in a variety of hematologic malignancies, including primary B-ALL samples. This overexpression was driven by NFκB activation, which also increased the surface localization of Sig15. Secreted/soluble Sig15 was found to circulate at elevated levels in the plasma of children with B-ALL and correlated with an immune-suppressive cytokine milieu. Genetic inhibition of Sig15 in murine B-ALL promoted clearance of the leukemia by the immune system and a marked reversal of the immune-privileged leukemia bone marrow niche, including expanded early effector CD8+ T cells and reduction of immunosuppressive cytokines. Thus, Sig15 is a novel, potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Significance: We demonstrate that Sig15 is overexpressed in hematologic malignancies driven by NFκB, is required for immune evasion in a mouse model of leukemia, and, for the first time, that it circulates at high levels in the plasma of children with leukemia.
    Type of Medium: Online Resource
    ISSN: 2767-9764
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 3098144-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2021
    In:  The Journal of Immunology Vol. 206, No. 1_Supplement ( 2021-05-01), p. 22.08-22.08
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 206, No. 1_Supplement ( 2021-05-01), p. 22.08-22.08
    Abstract: Obese pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) have inferior overall survival outcomes compared to lean patients, with obese patients having a 2.5-fold increased risk of an adverse event and an almost 4-fold greater risk of death. Emerging data suggest that the presence of factors in the obese microenvironment may directly promote chemoresistance in B-ALL cells. Objective Given the increasing prevalence of obesity and negative impact of obesity on cancer, in this study, we sought to determine how adipocytes impact B-ALL progression and responses to front-line chemotherapies. Results We found that circulating IL-9 levels were significantly elevated in obese mice fed high-fat diets compared to mice fed control diets. Furthermore, treating human B-ALL cells with recombinant IL-9 (rIL-9) promoted cell cycle progression and proliferation. Interestingly, rIL-9 stimulation of human B-ALL cells activated survival pathways, which coincide with the induction of chemoresistance to methotrexate and doxorubicin. Conclusions Our findings demonstrate that IL-9 levels are elevated in obese microenvironments and that this cytokine promotes B-ALL pathogenesis. In ongoing studies, we are determining how antibody-mediated neutralization of IL-9 impacts disease progression and chemosensitivity in B-ALL cells.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2021
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-06-15)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages