In:
Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 335-335
Abstract:
Tumor cells depend on both glycolysis and oxidative phosphorylation (OXPHOS) for energy and biomass production leading to robust cell proliferation. Recent data has demonstrated a dependence of various tumor types on mitochondrial OXPHOS, which represents an exciting therapeutic opportunity. Through an extensive medicinal chemistry campaign, IACS-10759 was identified as a potent, selective inhibitor of complex I of the electron transport chain, which is orally bioavailable and has excellent PK and physicochemical properties in preclinical species. Our group and others have demonstrated that a variety of tumor types including: AML, plus subsets of lymphoma, breast, melanoma and PDAC are highly dependent on OXPHOS to meet energy and biomass demands. Treatment of multiple cell lines and patient derived xenograft (PDX) models in multiple cancer types with IACS-10759 led to decreased oxygen consumption rate (OCR). IACS-10759 treatment also led to a robust decrease in cell viability and often an increase in apoptosis with EC50 values between 1 nM - 50 nM across multiple lines. Through a series of mechanistic studies we established that IACS-10759 blocks complex I of the electron transport at the quinone binding site. In an orthotopic xenograft model of primary AML cells derived from a patient who was refractory to standard of care and salvage therapies, 42 days of IACS-10759 treatment with 3 and 10 mg/kg orally using a 5 on/2 off schedule extended the median survival by greater than 2-fold. Efficacy was paralleled by robust modulation of OCR, aspartate, and p-AMPK levels. Additionally, tumor growth inhibition or regression was also observed in cell line and PDX xenograft models of lymphoma, triple negative breast, melanoma and PDAC treated with IACS-10759, indicating that subsets of several non-AML indications are also dependent on OXPHOS. Mechanistically, extensive metabolic profiling and flux analysis revealed that the response to IACS-10759 was associated with induction of a metabolic imbalance that negatively impacted energy homeostasis, amino acid biosynthesis, and NTP production due to reduced conversion of NADH to NAD+ by complex I, decreased ATP production, TCA cycle flux and nucleotide biosynthesis. As a result of the robust response in multiple cell lines, primary patient samples, and efficacy in PDX models, IACS-10759 has been advanced through IND enabling studies. GLP safety and toxicology have been completed, and we expect to file an IND at the end of 1Q2016 and initiate a Phase I clinical trial in AML during the second quarter of 2016. Citation Format: Jennifer R. Molina, Marina Protopopova, Madhavi Bandi, Jennifer Bardenhagen, Christopher Bristow, Christopher Carroll, Edward Chang, Ningping Feng, Jason Gay, Mary Geck Do, Jennifer Greer, Sha Huang, Yongying Jiang, Marina Konopleva, Polina Matre, Jing Han, Zhijun Kang, Gang Liu, Timothy McAfoos, Pietro Morlacchi, Melinda Smith, Sonal Gera, Jay Theroff, Quanyun Xu, Juliana Velez, Carlo Toniatti, Timothy Heffernan, Giulio Draetta, M. Emilia Di Francesco, Philip Jones, Joseph R. Marszalek. Title: IACS-010759 is a novel clinical candidate that targets AML cells by inducing a metabolic catastrophe through inhibition of oxidative phosphorylation. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 335.
Type of Medium:
Online Resource
ISSN:
0008-5472
,
1538-7445
DOI:
10.1158/1538-7445.AM2016-335
Language:
English
Publisher:
American Association for Cancer Research (AACR)
Publication Date:
2016
detail.hit.zdb_id:
2036785-5
detail.hit.zdb_id:
1432-1
detail.hit.zdb_id:
410466-3
Bookmarklink