In:
Materials, MDPI AG, Vol. 14, No. 9 ( 2021-05-01), p. 2361-
Kurzfassung:
The layer-by-layer (LbL) method of polyelectrolyte multilayer (PEM) fabrication is extremely versatile. It allows using a pair of any oppositely charged polyelectrolytes. Nevertheless, it may be difficult to ascribe a particular physicochemical property of the resulting PEM to a structural or chemical feature of a single component. A solution to this problem is based on the application of a polycation and a polyanion obtained by proper modification of the same parent polymer. Polyelectrolyte multilayers (PEMs) were prepared using the LbL technique from hydrophilic and amphiphilic derivatives of poly(allylamine hydrochloride) (PAH). PAH derivatives were obtained by the substitution of amine groups in PAH with sulfonate, ammonium, and hydrophobic groups. The PEMs were stable in 1 M NaCl and showed three different modes of thickness growth: exponential, mixed exponential-linear, and linear. Their surfaces ranged from very hydrophilic to hydrophobic. Root mean square (RMS) roughness was very variable and depended on the PEM composition, sample environment (dry, wet), and the polymer constituting the topmost layer. Atomic force microscopy (AFM) imaging of the surfaces showed very different morphologies of PEMs, including very smooth, porous, and structured PEMs with micellar aggregates. Thus, by proper choice of PAH derivatives, surfaces with different physicochemical features (growth type, thickness, charge, wettability, roughness, surface morphology) were obtained.
Materialart:
Online-Ressource
ISSN:
1996-1944
Sprache:
Englisch
Verlag:
MDPI AG
Publikationsdatum:
2021
ZDB Id:
2487261-1
Bookmarklink