Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 32, No. 7 ( 2022-03-30), p. 1494-1507
    Abstract: Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown. Here, we show that human neurons derived from patients with a DcpS mutation have compromised differentiation and neurite outgrowth. Moreover, in the developing mouse neocortex, DcpS is required for the radial migration, polarity, neurite outgrowth, and identity of developing glutamatergic neurons. Collectively, these findings demonstrate that the scavenger mRNA decapping activity contributes to multiple pivotal roles in neural development and further corroborate that mRNA metabolism and neocortical pathologies are associated with intellectual disability.
    Type of Medium: Online Resource
    ISSN: 1047-3211 , 1460-2199
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 19, No. 9 ( 2009-9), p. 2196-2207
    Type of Medium: Online Resource
    ISSN: 1460-2199 , 1047-3211
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2009
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  WIREs RNA Vol. 13, No. 1 ( 2022-01)
    In: WIREs RNA, Wiley, Vol. 13, No. 1 ( 2022-01)
    Abstract: Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post‐transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post‐transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non‐coding RNAs, and/or microRNA. Remarkably, mutations in these post‐transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co‐morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett‐syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation 〉 Translation Regulation RNA in Disease and Development 〉 RNA in Disease RNA Interactions with Proteins and Other Molecules 〉 Protein‐RNA Interactions: Functional Implications
    Type of Medium: Online Resource
    ISSN: 1757-7004 , 1757-7012
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2561973-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-09-27)
    Abstract: Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2010
    In:  Translational Neuroscience Vol. 1, No. 4 ( 2010-12-1), p. 268-278
    In: Translational Neuroscience, Walter de Gruyter GmbH, Vol. 1, No. 4 ( 2010-12-1), p. 268-278
    Abstract: Spinal cord injury (SCI) can be a lifelong, devastating condition for both the patient and the caregiver, with a daunting incidence rate. Still, there are only limited available therapies and the effectiveness of precise regeneration within the central nervous system is minimal throughout postnatal life. Recently, improved regeneration after SCI was seen by manipulating a pathway in sensorimotor neocortices that is involved in phosphorylation of an RNA binding protein (RBP) required for mRNA translation, the Eukaryotic translation initiation factor 4E (eIF4E). Our data identifies rapid molecular alterations of eIF4E in the sensorimotor neocortices 1 and 3 days after a lateral hemisection SCI, used as a model for Brown-Séquard syndrome. The function of an RBP depends on both its distribution sites within the cell and its phosphorylation states. Indeed, we found both to be affected after SCI. There was a distinct subcellular redistribution of eIF4E and phosphorylated-eIF4E was reduced, indicating that the eIF4E’s translation was disrupted. Upon identification and analysis of the mRNA cargo of eIF4E in uninjured sensorimotor neocortices, we found that eIF4E binds both Importin-13 (Ipo13) and Parvalbumin (Pv) mRNAs, indicating a role in their translation. Remarkably, eIF4E’s interaction with both Ipo13 and Pv mRNAs was disrupted 1 and 3 days after SCI, despite preservation of total Ipo13 and Pv mRNA levels. Finally, we detected a selective loss of expression of both IPO13 and PV proteins in projection neurons of sensorimotor neocortices, as well as their disrupted dendritic polarity. Since IPO13 is predominantly expressed in neocortical projection neurons and PV in a subset of neocortical interneurons, these data suggest a strong acute effect of SCI on neocortical microcircuitry. Taken together, these data indicate that neocortical eIF4E and a subset of mRNAs may be rapidly recruited to translational machinery after SCI to promote adaptive regeneration response of sensorimotor neurons.
    Type of Medium: Online Resource
    ISSN: 2081-6936 , 2081-3856
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2581219-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Neuroscience Vol. 15 ( 2022-1-10)
    In: Frontiers in Neuroscience, Frontiers Media SA, Vol. 15 ( 2022-1-10)
    Abstract: The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
    Type of Medium: Online Resource
    ISSN: 1662-453X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2411902-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: The EMBO Journal, Wiley, Vol. 26, No. 9 ( 2007-5-2), p. 2371-2386
    Type of Medium: Online Resource
    ISSN: 0261-4189 , 1460-2075
    RVK:
    Language: Unknown
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 1467419-1
    detail.hit.zdb_id: 586044-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6614 ( 2022-09-30)
    Abstract: The dorsolateral prefrontal cortex (dlPFC) lies at the center of high-order cognition and complex social behaviors, which are highly derived traits in anthropoid primates—particularly in humans. RATIONALE The granular dlPFC represents an evolutionary specialization found only in anthropoid primates, and alterations in the molecular and cellular mechanisms underlying its intricate circuitry have been implicated in myriad neuropsychiatric diseases. However, little is known about the full repertoire of cell types in the primate dlPFC and how conserved these cell types are between human and other primate species. RESULTS We generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets, thus spanning major primate phylogenetic groups. To study regulatory mechanisms underlying human-specific divergence, we generated single-nucleus multiome data (snATAC-seq and snRNA-seq) profiling the human dlPFC. Through cell clustering, marker gene expression, and integration with published multimodal and multispecies data we defined three levels of hierarchically organized taxonomy of transcriptomically defined neuronal, glial, and non-neural cell types in the four species, including four major cell classes, 29 subclasses and 114 subtypes. Most cell subtypes were conserved across the four species but we unraveled prominent species differences both at the molecular and cellular levels. We identified five cell subtypes detected in only a subset of species, including a layer (L) 2-3 intratelencephalic subtype absent in marmosets, an inhibitory neuron subtype exclusive to marmosets, and a microglial subtype detected only in humans. Cross-species comparisons of cell type proportions showed that L2-3 intratelencephalic neurons underwent substantial expansion in humans compared with other species as well as in Catarrhini as compared with marmosets. Gene expression entropy analysis revealed more transcriptomic heterogeneity among L2-3 intratelencephalic neurons in Catarrhini compared to marmosets. These results confirm and extend theories of primate cortical expansion. Within homologous cell subtypes across species, we identified prominent molecular changes. These are characterized by loss of expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine (including dopamine) biosynthesis, in the inhibitory neurons of chimpanzees that are homologous to TH-expressing inhibitory neurons in the other species studied. Among TH-expressing homologous cell subtypes in humans, macaques, and marmosets, we identified a human-specific posttranscriptional switch between the neuropeptide SST and TH, and the human-specific expression of genes involved in dopaminergic function. Through transcriptomic comparisons across the four primate species and immunohistochemistry across 51 mammal species, we found that the neuropsychiatric risk gene FOXP2 exhibited human-specific expression in microglia and primate-specific expression in L4 excitatory neurons. By integrating chromatin accessibility and gene coexpression, we identified cis-regulatory elements regulating FOXP2 expression and constructed FOXP2 regulatory networks including downstream targets mirroring the cell type- and species-specific FOXP2 expression patterns. CONCLUSION We produced a transcriptomic catalog of the primate dlPFC cell types, complemented with epigenomic characterization in the human dlPFC. Our analyses delineated cell type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Shared and species-divergent features were implicated in biological pathways and neuropsychiatric diseases. Our data may serve as a resource for future studies on prefrontal cortex function and disease. Transcriptomic taxonomy of the dlPFC in four anthropoid primates. (Top left) Homologous regions of the dlPFC dissected for snRNA-seq and sn-multiome analyses. (Top right) 114 hierarchically organized (dendrogram) transcriptomically defined cell subtypes distributed across the four species (bar plots; same color code as in the top left panel), with species-specific variations highlighted. (Bottom) Notable molecular changes across species featured by species-specific FOXP2 expression and the human-specific posttranscriptional switching between SST and TH.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cells, MDPI AG, Vol. 12, No. 2 ( 2023-01-05), p. 231-
    Abstract: Early regional patterning and laminar position of cortical projection neurons is determined by activation and deactivation of transcriptional factors (TFs) and RNA binding proteins (RBPs) that regulate spatiotemporal framework of neurogenetic processes (proliferation, migration, aggregation, postmigratory differentiation, molecular identity acquisition, axonal growth, dendritic development, and synaptogenesis) within transient cellular compartments. Deep-layer projection neurons (DPN), subplate (SPN), and Cajal–Retzius neurons (CRN) are early-born cells involved in the establishment of basic laminar and regional cortical architecture; nonetheless, laminar dynamics of their molecular transcriptional markers remain underexplored. Here we aimed to analyze laminar dynamics of DPN markers, i.e., transcription factors TBR1, CTIP2, TLE4, SOX5, and RBP CELF1 on histological serial sections of the human frontal cortex between 7.5–15 postconceptional weeks (PCW) in reference to transient proliferative, migratory, and postmigratory compartments. The subtle signs of regional patterning were seen during the late preplate phase in the pattern of sublaminar organization of TBR1+/Reelin+ CRN and TBR1+ pioneering SPN. During the cortical plate (CP)-formation phase, TBR1+ neurons became radially aligned, forming continuity from a well-developed subventricular zone to CP showing clear lateral to medial regional gradients. The most prominent regional patterning was seen during the subplate formation phase (around 13 PCW) when a unique feature of the orbitobasal frontal cortex displays a “double plate” pattern. In other portions of the frontal cortex (lateral, dorsal, medial) deep portion of CP becomes loose and composed of TBR1+, CTIP2+, TLE4+, and CELF1+ neurons of layer six and later-born SPN, which later become constituents of the expanded SP (around 15 PCW). Overall, TFs and RBPs mark characteristic regional laminar dynamics of DPN, SPN, and CRN subpopulations during remarkably early fetal phases of the highly ordered association cortex development.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Cells Vol. 10, No. 2 ( 2021-01-28), p. 253-
    In: Cells, MDPI AG, Vol. 10, No. 2 ( 2021-01-28), p. 253-
    Abstract: Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neocortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also disrupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. In particular, the Wnt3-Fzd7 signaling axis determines the deep layer Foxp2-expressing neurons of developing neocortices. Our findings also suggest that Fzd7 controls the balance of the expression for Foxp transcription factors in developing neocortical neurons. These discoveries are presented in our manuscript within a larger framework of this review on the role of extrinsic factors in regulating mRNA translation.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages