Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 13_Supplement ( 2013-07-01), p. B45-B45
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 13_Supplement ( 2013-07-01), p. B45-B45
    Abstract: Rearrangement of the gene mixed-lineage leukemia (MLL) occurs in ~75% of infant and ~10% child/adult acute leukemias. Outcomes for MLL-rearranged leukemias are dismal, with fewer than 20% of infants & lt;3 months of age expected to survive the disease. Intensified chemotherapy has led to increased toxicity without significantly improved survival, likely due to a small population of leukemic stem cells that are resistant to conventional chemotherapeutic agents. DOT1L, the only known histone 3-lysine 79 (H3K79) methyltransferase, is essential for the survival and proliferation of MLL-rearranged leukemia stem cells. A potent inhibitor of DOT1L, SYC-522, has been reported by our collaborator, Dr. Yongcheng Song [Yao, et al. (2011) J. Am. Chem. Soc.]. Treatment of MLL-rearranged leukemia cell lines with SYC-522 for 24 hours resulted in decreased H3K79 methylation at 3μM for MV4-11 and 10μM for THP-1 and MOLM13 cell lines. SYC-522 did not affect H3K4 methylation in MLL-rearranged or MLL-wild type leukemia cell lines. After 3-6 days of treatment with SYC-522 (3μM), the mRNA levels of two important genes regulated by DOT1L, HOXA9 and MEIS1, were decreased by more than 50% in MV4-11 cells. Additionally, CCND1 expression was decreased by 30~50%, but BCL2L1 expression was not changed. Exposure of MLL-rearranged leukemia cells to SYC-522 caused cell cycle arrest in G0/G1 phase and promoted differentiation, as assessed both morphologically and by increased CD14 expression. Furthermore, SYC-522 treatment decreased the number of myeloid colony forming units (CFUs) of primary MLL-rearranged AML samples by 50% (30μM), but decreased myeloid CFUs from normal bone marrow samples by only 20%. SYC-522 induced & lt;10% apoptosis in MLL-rearranged AML cell lines at doses up to 10μM for up to 20 days. However, pretreatment with SYC-522 (3μM for 3 days) significantly increased the sensitivity of MLL-rearranged leukemia cells to chemotherapy drugs, such as etoposide and mitoxantrone. Treatment of MV4-11 cells with 10nM mitoxantrone caused 20% ± 5% apoptosis, which was increased to 40% ± 5% with 10nM mitoxantrone+ 3μM SYC-522 (n=3; p & lt;0.05). Similar results were obtained for MV4-11 cells treated with etoposide with and without SYC-522 pretreatment, and for MOLM-13 cells treated with each chemotherapy agent. These results suggest that SYC-522-mediated inhibition of DOT1L activity sensitizes MLL-rearranged leukemia cells to DNA-damaging chemotherapy, and therefore the inhibition of DOT1L is likely to be a promising approach to improving therapies for MLL-rearranged leukemia. Citation Format: Wei Liu, Wei Liu, Lisheng Deng, Yongcheng Song, Michele Redell, Michele Redell. The inhibitory effect of a novel DOT1L inhibitor in MLL-rearranged acute myeloid leukemia. [abstract]. In: Proceedings of the AACR Special Conference on Chromatin and Epigenetics in Cancer; Jun 19-22, 2013; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2013;73(13 Suppl):Abstract nr B45.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1473-1473
    Abstract: Chronic myeloid leukemia (CML) accounts for 2-9% of leukemias in children and adolescents, and occurs with much greater frequency in adults. Compared to adults, children with CML tend to present with higher white blood cell counts and larger spleens, suggesting that the biology of pediatric CML is different from adult CML. We hypothesize that the differences in clinical presentation of pediatric CML are due to unique molecular characteristics that differ from adult CML. To test this hypothesis, we compared the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy age-matched CD34+ cells. CD34+ cells were isolated by FACS from pediatric CML (n=9), adult CML (n=10), pediatric healthy (n=10), and adult healthy (n=10) bone marrow samples. Prepared libraries were sequenced on the Illumina HiSeq 4000 instrument. Raw sequences were trimmed and aligned to the hg38 reference genome with STAR/2.5.1b aligner. Gene level counts were determined with STAR -quantMode option using gene annotations from GENCODE (p5). Differential gene expression and pathway analysis were conducted with R/3.5.3. Counts were normalized with trimmed mean of M-values from the EdgeR/ 3.24.3 package and further transformed with VOOM from the Limma/ 3.38.3 package. A linear model using the empirical Bayes analysis pipeline also from Limma was then used to obtain p-values, adjusted p-values and log-fold changes. Four comparisons were performed: (1) pediatric CML vs pediatric healthy, (2) adult CML vs adult healthy, (3) pediatric CML vs adult CML, and (4) pediatric healthy vs adult healthy. A False Discovery Rate of ≤ .05 and absolute log2 fold-change & gt; 1 was used to define differentially expressed genes (DEGs) in each comparison. To identify potentially unique pathways based on DEG, pathway over-representation was calculated with either goana from the limma package or clueGO. At diagnosis, pediatric patients had higher platelet counts (p=0.001) and larger spleen sizes (p=0.010) than adult patients. Median WBC counts were 273,000 and 143,000 in pediatric and adult patients respectively. A total of 1352 genes were differentially expressed in either adult or pediatric CML CD34+ cells compared to healthy CD34+ cells, 174 of which were expressed similarly in pediatric and adult CML CD34+ cells (54 up- and 120 down-regulated). There were 746 differentially expressed genes (325 up- and 421 down-regulated) in adult CML CD34+ cells compared to adult healthy CD34+ cells, and 432 differentially expressed genes (156 up- and 276 down-regulated) in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. In direct comparison of pediatric and adult CML CD34+ cells, 446 genes (270 up and 176 down) were dysregulated in pediatric CML CD34+ cells. Pathway analysis showed that Rho signaling pathway was downregulated in pediatric CML CD34+ cells and several genes in Rho pathway were uniquely dysregulated. ARHGAP27 and VAV2 were significantly upregulated in adult CML CD34+ cells by 3.7-fold (p=0.0453) and 11-fold (p=0.0072), respectively, compared to pediatric CML CD34+ cells. In addition, several genes involved in the NADPH oxidase pathway, one of the best-characterized Rho GTPase-regulated systems, were differently expressed in CML. NCF1, CYBB, and S100A8 were significantly upregulated in adult CML CD34+ cells by 4-fold (p=0.0045), 3.26-fold (p & lt;0.0001), and 3.09-fold (p & lt;0.0001), respectively, compared to pediatric CML CD34+ cells. Furthermore, DLC1, which is known as a negative regulator of Rho pathway, was significantly upregulated in pediatric CML CD34+ cells by 2.47-fold (p=0.0493) compared to adult CML CD34+ cells. These results demonstrate unique molecular characteristics of pediatric CML that may contribute to the clinical differences at presentation between adult and pediatric disease. A better understanding of the molecular biology of CML across the ages will provide new insights into the pathogenesis of pediatric CML and potentially inform future treatment decisions. Disclosures Davis: Jazz Pharmaceuticals: Research Funding; Novartis Pharmaceuticals: Honoraria. Hijiya: Novartis: Consultancy; Stemline Therapeutics: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 39-40
    Abstract: Introduction Pediatric chronic myeloid leukemia (CML) accounts for 10-15% of pediatric myeloid leukemias and 2-9% of all pediatric leukemias. There are several unique characteristics of CML diagnosed in children, adolescents, and young adults, compared to adults. They present with higher white blood counts and larger spleens, suggesting that the biology of pediatric CML is different from adult CML. We hypothesize that the differences in clinical presentation of pediatric CML patients are due to unique molecular characteristics that differ from adult CML patients. To test this hypothesis, we studied the transcriptomic signature of pediatric CD34+ CML cells compared to adult CML and normal age-matched bone marrow CD34+ cells. Methods CD34+ cells were isolated by FACS from pediatric CML (n=9), adult CML (n=10), pediatric normal (n=10) and adult normal (n=10) bone marrow samples. Total RNA was isolated from cells, and cDNA libraries were generated. Prepared libraries were sequenced on the Illumina HiSeq 4000 instrument. Raw sequences were trimmed and aligned to the hg38 reference genome with STAR/2.5.1b aligner. Gene level counts were determined with STAR -quantMode option using gene annotations from GENCODE (p5). Differential gene expression and pathway analysis were conducted with R/3.5.3. Counts were normalized with trimmed mean of M-values (TMM) from the EdgeR/ 3.24.3 package and further transformed with VOOM from the Limma/ 3.38.3 package. A linear model using the empirical Bayes analysis pipeline also from Limma was then used to obtain p-values, adjusted p-values and log-fold changes (LogFC). We performed three comparisons: (1) Pediatric CML vs Normal, (2) Adult CML vs Normal, and (3) Pediatric CML vs Adult CML. A False Discovery Rate (FDR) of £ .05 and absolute log2 fold-change & gt; 1 was used to define differentially expressed genes in each comparison. Over-representation analysis was used to identify potentially unique pathways based on differentially expressed genes. Clinical and demographic features at diagnosis were extracted for pediatric and adult CML patients and compared using Fisher's exact test (categorical variables) or Wilcoxon rank sum test (continuous variables). Results Pediatric patients were diagnosed with CML at a median of 11 years (interquartile range (IQR): 10-14) compared to 54 years (IQR: 33-62) for adult patients. At diagnosis, pediatric patients had higher platelet counts (p=0.001) and larger spleen sizes (p=0.010) than adult patients, whereas the white blood cell count and phase at diagnosis did not differ. We found 606 genes (210 up- and 396 down-regulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric normal controls. Interestingly, transcriptional regulators involved in blood cell differentiation including GATA1, TAL1, and KLF1 were differentially enriched in pediatric CML. In comparing adult CML patients to normal adult CD34+ cells, we found 920 genes (379 up- and 541 down-regulated) differentially expressed. Among all dysregulated genes we identified (1352 genes), 174 genes (54 up- and 120-down-regulated) overlapped when comparing pediatric and adult CML patients. Significantly enriched pathways in both adult and pediatric CML cells included PI3K/AKT signaling, MAPK signaling, and Notch/Wnt signaling, which have been previously reported. We found 437 unique genes that were dysregulated only in pediatric CML (270 up- and 167 down-regulated). Notch/Wnt signaling and Rho signaling pathways were significantly enriched. DLC1, a tumor suppressor gene that encodes a RhoGTPase-activating protein, has been known to be downregulated in solid tumors and hematologic malignancies. Interestingly, our data showed that DLC1 is significantly upregulated by 3-fold (p=0.0238) in pediatric CML, but not adult CML CD34+ cells. In addition, we observed that ABR, an inducer of C/EBPa that encodes an activator of RhoGEF and GTPase, was significantly downregulated by 2-fold (p=0.0119) in pediatric but not in adult CML CD34+ cells. Conclusion These results demonstrate unique molecular characteristics of pediatric CML that may contribute to the clinical differences at presentation between adult and pediatric disease. A better understanding of the particular biology of pediatric CML might impact the treatment of those patients in the future. Disclosures Gotlib: Deciphera: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: co-chair of the Study Steering Committee and Research Funding; Blueprint Medicines Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Chair of the Response Adjudication Committee and Research Funding, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 4246-4246
    Abstract: Introduction Pediatric chronic myeloid leukemia (CML) accounts for 10 to 15% of children with myeloid leukemia and 2 to 9% of all pediatric leukemias. Prior to the discovery of tyrosine kinase inhibitors (TKI) such as imatinib, stem cell transplantation was the only curative treatment for both adults and children with CML. However, due to the small numbers of patients, standardized treatment approaches for pediatric CML have not been established. There are several unique characteristics of CML diagnosed in children and adolescents, and young adults (AYA; 16-29 years), compared to adults. Children and AYA with CML present with a higher white blood count and have larger spleens, higher peripheral blast counts, and lower hemoglobin levels, suggesting that the biology of pediatric CML is different than adult CML. In addition, potential side effects of TKIs unique to pediatric CML patients include impaired bone growth, fertility and immune function, however none have been extensively studied. We hypothesize that the differences in clinical presentation of pediatric CML patients are due to unique molecular characteristics that are absent in adult CML patients. To test this hypothesis, we studied the transcriptomic signature of pediatric CD34+ CML cells compared to adult CML and normal age-matched bone marrow CD34+ cells. Methods CD34+ cells were isolated from pediatric CML (n=7), adult CML (n=8), pediatric normal (n=2) and adult normal (n=3) bone marrow samples. Total RNA was isolated from cells, and then cDNA libraries were generated. Prepared libraries were sequenced on the Illumina HiSeq 4000 instrument. We aligned reads using the HISAT2 alignment software, and mapped to genes with HT-Seq. We removed genes that had zero reads across all the samples, resulting in a set of 4,696 genes that were detected in one or more samples. In case of technical replicates, we used mean of replicates. We performed three differential expression comparisons with edgeR: (1) Pediatric CML vs Adult CML, (2) Adult CML vs Adult Normal, and (3) Pediatric CML vs Pediatric Normal. We used a False Discovery Rate (FDR) of £ 20% and absolute log2 fold-change ³ 1 for selecting differentially expressed genes in each comparison. We used Fisher's exact test to identify significant KEGG pathways for the differentially expressed genes in each comparison. Results Pediatric CML vs Adult CML We found 24 differentially expressed genes (15 over- and 9 under-expressed). Though no pathway was found to be significant at the false discovery rate (FDR) £ 20%, we identified a number of sub-pathways that are relevant. For example, the Chemokine Signaling pathway shows at the top of the list (ordered by raw p-value) because of two genes, XCR1 and HCK, associated with VEGF and MAPK pathways involved in cell proliferation, angiogenesis, DNA repair, and cancer pathogenesis. Adult CML vs Adult Normal We found 60 genes (30 over- and 30 under-expressed) differentially expressed when comparing adult CML patients to normal adults. Ten genes overlapped with 24 genes we identified when comparing pediatric and adult CML patients. We found 11 pathways as significant at FDR £ 10%. Multiple pathways, including Cell adhesion, allograft rejection, Graft versus Host Disease, and Type I diabetes pathways, showed downregulation of MHC, with subsequent downstream reduction in expression of apoptosis-related genes. The IL-17 pathway makes sense, as MAPK, well-known to be associated with various cancers, is down-regulated. Lastly, in the NK pathway the gene DAP12 is up-regulated. This gene is known as a tyrosine kinase binding protein, and although tyrosine kinase inhibitors are the standard treatment for CML, the role of DAP12 in relation to leukemia has not yet been described. Pediatric CML vs Pediatric Normal We found 509 genes (350 over- and 159 under-expressed) differentially expressed in pediatric CML patients compared to normal. Interestingly, transcriptional regulators are differentially enriched in the hematopoietic stem cell differentiation function group including GATA1, GATA2, KLF1 and KLF2. RFC is down-regulated. RFC is a mismatch repair gene known to be involved in colorectal cancer. Many of the significant pathways are involved in glucose and fatty acid metabolism. Our pilot study identified novel molecular features of pediatric CML bone marrow stem cells, providing new insights into the novel biomarkers and pathogenesis of pediatric CML. Disclosures Gotlib: Blueprint Medicines: Consultancy, Honoraria, Research Funding; Promedior: Research Funding; Deciphera: Consultancy, Honoraria, Research Funding; Incyte: Consultancy, Honoraria, Research Funding; Kartos: Consultancy; Celgene: Consultancy, Honoraria, Research Funding; Gilead: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancers, MDPI AG, Vol. 13, No. 24 ( 2021-12-14), p. 6263-
    Abstract: Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Therapy, Elsevier BV, Vol. 24, No. 9 ( 2016-09), p. 1615-1626
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2001818-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancers, MDPI AG, Vol. 15, No. 7 ( 2023-03-26), p. 1983-
    Abstract: The BCL-2 inhibitor venetoclax improves survival for adult patients with acute myeloid leukemia (AML) in combination with lower-intensity therapies, but its benefit in pediatric patients with AML remains unclear. We retrospectively reviewed two Texas Medical Center institutions’ experience with venetoclax in 43 pediatric patients with AML; median age 17 years (range, 0.6–21). This population was highly refractory; 44% of patients (n = 19) had ≥3 prior lines of therapy, 37% (n = 16) had received a prior bone marrow transplant, and 81% (n = 35) had unfavorable genetics KMT2A (n = 17), WT1 (n = 13), FLT3-ITD (n = 10), monosomy 7 (n = 5), TP53 (n = 3), Inv(3) (n = 3), IDH1/2 (n = 2), monosomy 5 (n = 1), NUP98 (n = 1) and ASXL1 (n = 1). The majority (86%) received venetoclax with a hypomethylating agent. Grade 3 or 4 adverse events included febrile neutropenia in 37% (n = 16), non-febrile neutropenia in 12% (n = 5), anemia in 14% (n = 6), and thrombocytopenia in 14% (n = 6). Of 40 patients evaluable for response, 10 patients (25%) achieved complete response (CR), 6 patients (15%) achieved CR with incomplete blood count recovery (CRi), and 2 patients (5%) had a partial response, (CR/CRi composite = 40%; ORR = 45%). Eleven (25%) patients received a hematopoietic stem cell transplant following venetoclax combination therapy, and six remain alive (median follow-up time 33.6 months). Median event-free survival and overall survival duration was 3.7 months and 8.7 months, respectively. Our findings suggest that in pediatric patients with AML, venetoclax is well-tolerated, with a safety profile similar to that in adults. More studies are needed to establish an optimal venetoclax-based regimen for the pediatric population.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Leukemia, Springer Science and Business Media LLC, Vol. 33, No. 1 ( 2019-1), p. 52-63
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2008023-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Pediatric Blood & Cancer, Wiley, Vol. 64, No. 9 ( 2017-09)
    Abstract: Hispanics with acute leukemias have poorer outcomes than non‐Hispanic whites (NHWs), despite an increased likelihood of favorable prognostic features. We reviewed medical records from 167 children ages 0–18 years diagnosed with de novo AML over an 18‐year period at Texas Children's Cancer Center, among whom 129 self‐identified as Hispanic or NHW. Although Hispanics were significantly more likely to have the favorable prognostic cytogenetic feature t(8;21) ( P = 0.04), the expected survival benefit was not observed. This lack of survival benefit was primarily due to significantly poorer event‐free and overall survival among Hispanics treated with upfront stem cell transplantation after achieving first clinical remission ( P = 0.008).
    Type of Medium: Online Resource
    ISSN: 1545-5009 , 1545-5017
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2130978-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Leukocyte Biology, Oxford University Press (OUP), Vol. 82, No. 4 ( 2007-10-01), p. 975-985
    Abstract: Normal neutrophil development requires G-CSF signaling, which includes activation of Stat3. Studies of G-CSF-mediated Stat3 signaling in cell culture and transgenic mice have yielded conflicting data regarding the role of Stat3 in myelopoiesis. The specific functions of Stat3 remain unclear, in part, because two isoforms, Stat3α and Stat3β, are expressed in myeloid cells. To understand the contribution of each Stat3 isoform to myelopoiesis, we conditionally overexpressed Stat3α or Stat3β in the murine myeloid cell line 32Dcl3 (32D) and examined the consequences of overexpression on cell survival and differentiation. 32D cells induced to overexpress Stat3α, but not Stat3β, generated a markedly higher number of neutrophils in response to G-CSF. This effect was a result of decreased apoptosis but not of increased proliferation. Comparison of gene expression profiles of G-CSF-stimulated, Stat3α-overexpressing 32D cells with those of cells with normal Stat3α expression revealed novel Stat3 gene targets, which may contribute to neutrophil expansion and improved survival, most notably Slc28a2, a purine nucleoside transporter, which is critical for maintenance of intracellular nucleotide levels and prevention of apoptosis, and Gpr65, an acid-sensing, G protein-coupled receptor with pro-oncogenic and antiapoptotic functions.
    Type of Medium: Online Resource
    ISSN: 0741-5400 , 1938-3673
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2007
    detail.hit.zdb_id: 2026833-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages