Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 2 ( 2023-02-13), p. 600-611
    Abstract: Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/ or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5037-5037
    Abstract: The development of effective radioligand therapeutics (RLTs) is frequently hampered by the lack of high-quality targeting agents that selectively deliver radioactive payloads to the site of disease while sparing healthy tissues. Antibodies can have high affinity and specificity to tumor targets, but their large size results in limited tumor penetration and long systemic half-life is frequently causing haematological toxicities. Alternatively, targeting agents with low molecular weight such as small molecules and peptides often suffer from limited affinity and specificity to the tumor target, resulting in off-target effects and limited tumor retention. DARPins (Designed Ankyrin Repeat Proteins) developed by Molecular Partners combine small size (15 kDa) and ideal binding properties. Due to their rigid-body target binding mode DARPins combine very high affinity and specificity and unless engineered accordingly, DARPins have very short systemic half-lives. Thanks to a simple and robust architecture, DARPins can be efficiently coupled with radioactive payloads, even at elevated temperatures; and they can tolerate sequence-engineering approaches, which are not compatible with other protein scaffolds. To establish the DARPin platform for RLT, we have used DARPin candidates against different tumor targets. We have previously shown that increasing affinity to the tumor target correlates with elevated tumor uptake and long tumor residence in preclinical mouse models. We now also show that DARPins exhibit a homogeneous and deep tumor penetration in vivo that is highly superior to antibody benchmarks. Globular proteins below 60 kDa in size are typically cleared from the bloodstream via the renal pathway. This generally results in a strong kidney accumulation of small sized, protein-based targeting agents and their coupled residualizing radionuclides, leading to dose-limiting kidney toxicities. To overcome this limitation, we have undertaken an extensive engineering approach of the DARPin scaffold. Our results show that sequence engineering strongly reduces kidney uptake of DARPins without affecting their tumor uptake. This effect was confirmed with independent DARPin candidates suggesting a general applicability of the approach. Combined with other orthogonal strategies, we are able obtain favourable tumor to kidney ratios in preclinical mouse models. These results show that our proprietary optimized DARPin platform offers an attractive solution to the limitations of protein-based targeting agents for RLT applications. Together with the fact that high-affinity DARPins can be generated against a large variety of tumor targets, we conclude that our platform provides a powerful basis for the development of next-generation RLTs. Several DARPin-RLT programs in indications with high unmet medical need are currently in development. Citation Format: Andreas Bosshart, Stephan Wullschleger, Martin Behe, Alain Blanc, Stefan Imobersteg, Alexandra Neculcea, Jacqueline Blunschi, Liridon Abduli, Sarah Schütz, Julia Wolter, Christian Reichen, Amelie Croset, Alessandra Villa, Christian Lizak, Anne Goubier, Roger Schibli, Daniel Steiner. DARPins as powerful targeting agents for radioligand therapeutics. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; C ancer Res 2023;83(7_Suppl):Abstract nr 5037.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Protein Science, Wiley, Vol. 23, No. 11 ( 2014-11), p. 1572-1583
    Abstract: PDB Code(s): 4PLQ , 4PLR , 4PLS
    Type of Medium: Online Resource
    ISSN: 0961-8368 , 1469-896X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2000025-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 40, No. 12 ( 2022-12), p. 1845-1854
    Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3752-3752
    Abstract: Agonistic antibodies against the T cell costimulatory receptor 4-1BB (CD137) have proved to be very efficacious anti-tumor agents in preclinical animal models. However, clinical development of 4-1BB agonistic antibodies has met with limited success thus far. Anti-4-1BB monoclonal antibodies have either been reported to cause significant dose-limiting hepatotoxicity or demonstrated limited efficacy as single agent therapeutics. Here we describe the generation of a tumor-targeted 4-1BB agonist aimed at inducing more effective triggering of 4-1BB without associated systemic toxicity. Tumor targeting is achieved via fibroblast activation protein (FAP) which is abundantly expressed by cancer associated fibroblasts present in many solid tumors. Drug candidate MP0310 comprises DARPin domains binding to 4-1BB and FAP and is devoid of an antibody Fc domain. Compared to first generation monoclonal antibodies targeting 4-1BB, MP0310 shows high potency in vitro and less systemic activation in vivo. In vitro reporter and T cell assays indicate that MP0310 is a potent T cell co-stimulator whose activity is restricted to the presence of FAP-expressing cells. In humanized mouse xenograft studies, FAP-targeted 4-1BB activation induced potent co-stimulation of CD8 T cells leading to tumor growth inhibition. On the other hand, the DARPin molecule did not induce effects associated with strong systemic activation such as hepatotoxicity or exacerbation of graft versus host disease observed in such models, unlike the first generation FcγR-dependent 4-1BB antibodies. In addition, no systemic activation of T cell proliferation was observed in the absence of FAP-positive tumors. In healthy cynomolgus monkeys, administration of MP0310 did not induce systemic stimulation of memory T cell proliferation in contrast to an anti-4-1BB antibody despite MP0310 being fully cross-reactive to cyno 4-1BB and binding effectively to cyno FAP. Therefore, we conclude that the tumor-restricted co-stimulation of 4-1BB may prevent toxicities caused by systemic 4-1BB activation and provide a safe and effective way to boost anti-tumor T cell responses. This could allow more effective dosing and better combination therapies with checkpoint inhibitors and other immune stimulating drugs. MP0310 is in preparation to enter clinical development. Citation Format: Alexander Link, Julia Hepp, Christian Reichen, Patricia Schildknecht, Ivana Tosevski, Joanna Taylor, Laurent Juglair, Alexander Titz, Mirela Matzner, Ralph Bessey, Christof Zitt, Guy Lemaillet, Joerg Herbst, Keith M. Dawson, Hong Ji, Victor Levitsky, Dan Snell, Michael T. Stumpp, Andreas Harstrick, Elmar vom Baur. Preclinical pharmacology of MP0310: A 4-1BB/FAP bispecific DARPin drug candidate promoting tumor-restricted T-cell costimulation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3752.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 4552-4552
    Abstract: During the last years, immune-modulating drugs became an important cornerstone in the treatment of cancer patients. In particular, the PD1/PDL-1 and CTLA-4 antagonists revolutionized the field. However, only a limited number of patients benefit from these antagonistic molecules and more combination therapies are on the way to increase the number of patients benefiting from these novel therapies. Among the combinations, drugs that are T-cell or myeloid cell agonists belonging to the TNFR-superfamily show first promising clinical results. However, systemic immune activation bears the risk of severe side effects that will not allow using these powerful drugs at an effective dose. We have developed a new class of DARPin molecules that enable tumor-restricted immune cell activation of TNFR-superfamily agonists in the tumor only, thereby preventing systemic immune-activation. We generated DARPin molecules that bind with high affinity to TNFR-superfamily members (CD134, CD137 and CD40) and DARPin molecules that bind to tumor-specific antigens such as HER2 and EGFR or targets restricted to the tumor stroma compartment like FAP and extra-domain B of fibronectin (ED-B). Using these building blocks from our DARPin toolbox, we constructed a variety of multi-specific molecules consisting of a TNFR-superfamily receptor targeting DARPin molecule and a tumor-localizing DARPin molecule. In reporter cell assays the multi-specific DARPin molecules activate the respective TNF-superfamily receptor only in the presence of a cell expressing the tumor-localizer; e.g. the FAP-CD134 molecule activates CD134 only in the presence of a stromal cell expressing FAP and not in its absence. Moreover, activation of CD134 was dependent on the density of FAP expression on cells, showing that CD134 only becomes activated if a certain level of the tumor-localizing target is expressed. These finding were confirmed in experiments with primary immune cells where we see immune-cell activation only upon binding to the tumor-localizing target. This could be shown for multiple combinations ( & gt;8) and supports the concept that multi-specific DARPin molecules are powerful drug-candidates allowing tumor-restricted immune cell activation. Citation Format: Ulrike Fiedler, Christian Reichen, Joanna Taylor, Patricia Schildknecht, Sophie Barsin, Clara Metz, Anja Schlegel, Simon Fontaine, Denis Villemagne, Julia Ahlskog, Yvonne Kaufmann, Alexander Link, Nicolo Rigamonti, Julia Hepp, Michael T. Stumpp. Tumor-restricted immune modulation by multispecific molecules from the DARPin toolbox [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4552.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2020
    In:  ACS Chemical Biology Vol. 15, No. 2 ( 2020-02-21), p. 457-468
    In: ACS Chemical Biology, American Chemical Society (ACS), Vol. 15, No. 2 ( 2020-02-21), p. 457-468
    Type of Medium: Online Resource
    ISSN: 1554-8929 , 1554-8937
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2020
    detail.hit.zdb_id: 2221735-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. e14626-e14626
    Abstract: e14626 Background: Urelumab (BMS-663513) is a humanized monoclonal antibody binding to CD137 which, upon Fc-clustering, leads to activation of T-cells. Urelumab is currently in Phase 2 clinical development and has been reported to cause significant hepatotoxicities (around 15% Grade ≥2 ALT and AST elevation) when given as infusion every 3 weeks at doses ≥0.3 mg/kg. Currently ongoing clinical trials report decreased systemic toxicity but limited efficacy at lower doses of urelumab. We hypothesized that more effective triggering of CD137 without associated systemic toxicity may be achieved by targeting a CD137 agonistic engager without Fc to fibroblast activation protein (FAP) which is abundantly expressed in the stroma of many solid tumors. To achieve this, a targeted molecule belonging to the DARPin family of binding proteins was composed of one FAP- and two CD137-binding domains in a “beads on a string” format and tested in a mouse model with human PBMCs. Methods: Human PBMCs were used to reconstitute the immune system in NOG mice implanted subcutaneously with HT-29 human colon cancer cells. Mice were monitored for survival, body weight, and tumor size during the treatment phase of two weeks. Results: None of the mice in the control group died and no significant body weight loss was observed. Six of ten (60%) mice in the CD137 antibody group showed strong signs of graft vs. host disease and either died or reached the termination criterion of ≥20% body weight loss and were sacrificed. One of 30 (3%) mice died in the DARPin drug candidate groups but none of the animals showed body weight loss of ≥20% (p 〈 0.001, Log-rank test). Tumor growth inhibition was comparable for all treatment groups (around 20-30% at Day 18, p 〈 0.05 vs. control, Mann Whitney Test). Conclusions: This study confirms the hypothesis that systemic toxicities caused by the urelumab mode of action can be circumvented by FAP-targeting of a CD137 agonistic DARPin drug candidate while achieving comparable tumor growth inhibition. Consequently, higher clinical doses of tumor stroma-targeted agonistic DARPin drug candidates might be possible, and may result in stronger tumor growth inhibition.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2014
    In:  Journal of Structural Biology Vol. 185, No. 2 ( 2014-02), p. 147-162
    In: Journal of Structural Biology, Elsevier BV, Vol. 185, No. 2 ( 2014-02), p. 147-162
    Type of Medium: Online Resource
    ISSN: 1047-8477
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1469822-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2016
    In:  Journal of the American Chemical Society Vol. 138, No. 10 ( 2016-03-16), p. 3526-3532
    In: Journal of the American Chemical Society, American Chemical Society (ACS), Vol. 138, No. 10 ( 2016-03-16), p. 3526-3532
    Type of Medium: Online Resource
    ISSN: 0002-7863 , 1520-5126
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2016
    detail.hit.zdb_id: 1472210-0
    detail.hit.zdb_id: 3155-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages