In:
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 521, No. 1 ( 2023-03-02), p. 1162-1183
Abstract:
We present a photometric and spectroscopic analysis of the ultraluminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from ∼5.3 h after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multiwavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum ∼10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB = −19.95 mag), the slow decline (Δm15(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities, and the presence of significant unburned material above the photosphere. However, a flux excess for the first ∼1.5 d after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behaviour, while its +313 d spectrum shows prominent [O i] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with $\sim 0.04\, \mathrm{M_{\odot }}$ of H/He-poor circumstellar material at a distance of ∼1012 cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.
Type of Medium:
Online Resource
ISSN:
0035-8711
,
1365-2966
DOI:
10.1093/mnras/stad536
Language:
English
Publisher:
Oxford University Press (OUP)
Publication Date:
2023
detail.hit.zdb_id:
2016084-7
SSG:
16,12
Bookmarklink