Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2021-05-29)
    Abstract: Renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long-unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. The incompletely defined pathophysiological mechanisms involved confound informed selection of therapeutic targets. Addition of cytoprotective agents to PDF have been shown to counteract pathophysiological mechanisms induced by current PDF. Lithium is a well described inhibitor of glycogen synthase kinase 3β and has recently been shown to also have nephroprotective effects in low doses. Here, we aim to characterize icodextrin-based, PDF-induced cellular injury with a combined omics approach and to investigate the effects of LiCl on the PD-induced observed molecular perturbations. Method To investigate mechanisms of acute cellular damage by PDF we chose an in vitro model of primary omental-derived peritoneal mesothelial cells with direct exposure to icodextrin-based PDF, followed by short-term or extended recovery for detection of short-term and long-term changes in transcriptome, proteome, and cell injury. 0, 2.5 or 10 mM LiCl were added to the PDF. In-vitro findings were validated in peritoneal biopsies (n=41) from pediatric PD and CDK5 patients or healthy controls and peritoneal effluents from adult and pediatric PD patients (n=27) or ascites samples (n=4) as control. For in-vivo experiments, healthy and uremic mice (C57/Bl6, female) were chronically exposed to PD-fluid without or with the addition of 5 mM LiCl via an implanted catheter. In-vivo overexpression of CRYAB was induced by i.p. injection of an adenoviral vector. All animal experiments and use of patient samples were approved by the local ethics committees and performed according to animal protection laws or the Declaration of Helsinki, respectively. Results LiCl significantly improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most significantly and consistently counter-regulated by LiCl. In-vitro and in-vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like upregulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGFβ-independent activation of TGFβ-regulated targets. In contrast, αB-crystallin knock-down decreased VEGF expression and early mesothelial-to-mesenchymal transition (MMT). LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically upregulated in response to PDF and increased in peritoneal mesothelial cells from pediatric PD patient biopsies, correlating with markers of angiogenesis and fibrosis. Conclusion The cytoprotective effects of LiCl-supplemented PDF may be explained by counter-regulation of PD-induced angiogenesis via the novel target αB-crystallin. Reduction of mesothelial cell damage, peritoneal fibrosis and VEGF suggests therapeutic potential of this intervention. Repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy. Further study of LiCl-supplemented PDF is merited as a realistic approach to improving treatment longevity and patient outcomes during PD treatment.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1465709-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 13, No. 608 ( 2021-08-25)
    Abstract: Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)–induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-β–independent activation of TGF-β–regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Membranes, MDPI AG, Vol. 12, No. 11 ( 2022-11-09), p. 1120-
    Abstract: Used hemodialysis membranes (HD-M) are a valuable reservoir of biological information. Proteins bind to HD-M, but whether this process depends on the type of membrane or patient factors or selectively affects specific protein classes has not been adequately elucidated. State-of-the-art proteomics techniques are capable of identifying and quantifying this therapy-specific subproteome to enable the analysis of disease- or membrane-induced pathophysiologies. We demonstrate the feasibility of the deep proteomic characterization of the extracorporeal proteome adsorbed to HD-M. A shotgun proteomics approach using nano-flow liquid chromatography coupled to mass-spectrometry identified 1648 unique proteins eluted by a chaotropic buffer from the HD-M of eight patients. In total, 995 proteins were present in all eluates; a more stringent approach showed that a core proteome of 310 proteins could be identified independently in all samples. Stability of the dialyzer proteome was demonstrated by a 〉 90% re-identification rate on longitudinal samples of a single patient. The core proteome showed an overrepresentation of pathways of hemostasis and the immune system, and showed differences in membrane materials (polysulfone vs. helixone). This study demonstrates that optimized conditions combined with high-performance proteomics enable the in-depth exploration of the subproteome bound to HD-M, yielding a stable core proteome that can be exploited to study patient-specific factors and improve hemodialysis therapy.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2614641-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 24 ( 2021-12-10), p. 13277-
    Abstract: Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD. We set out to perform a meta-analysis of TX datasets to identify dysregulated receptor-ligand interactions in the context of PD-associated complications. We consolidated transcriptomics profiles from twelve untargeted genome-wide gene expression studies focusing on human cell cultures or samples from human PD patients. Gene set enrichment analysis was used to identify enriched biological processes. Receptor-ligand interactions were identified using data from CellPhoneDB. We identified 2591 unique differentially expressed genes in the twelve PD studies. Key enriched biological processes included angiogenesis, cell adhesion, extracellular matrix organization, and inflammatory response. We identified 70 receptor-ligand interaction pairs, with both interaction partners being dysregulated on the transcriptional level in one of the investigated tissues in the context of PD. Novel receptor-ligand interactions without prior annotation in the context of PD included BMPR2-GDF6, FZD4-WNT7B, ACKR2-CCL2, or the binding of EPGN and EREG to the EGFR, as well as the binding of SEMA6D to the receptors KDR and TYROBP. In summary, we have consolidated human transcriptomics datasets from twelve studies in the context of PD and identified sets of novel receptor-ligand pairs being dysregulated in the context of PD that warrant investigation in future functional studies.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Biomolecules, MDPI AG, Vol. 10, No. 12 ( 2020-12-15), p. 1678-
    Abstract: Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2701262-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: The Plant Journal, Wiley, Vol. 102, No. 5 ( 2020-06), p. 977-991
    Abstract: This work uncovers a previously unnoticed link between components of the miRNA biogenesis machinery, the skotomorphogenic growth, and hook development in Arabidopsis.
    Type of Medium: Online Resource
    ISSN: 0960-7412 , 1365-313X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020961-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Nephrology Dialysis Transplantation Vol. 38, No. Supplement_1 ( 2023-06-14)
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 38, No. Supplement_1 ( 2023-06-14)
    Abstract: Dialysis therapies including peritoneal dialysis (PD) are described to lead to premature vascular aging, atherosclerosis and associated cardiomyopathies, which are associated with high cardiovascular morbidity and mortality. Chronic inflammation, incomplete clearance of uremic toxins, and dyslipidaemia, are factors affecting the vasculature system. However, how these factors affect the endothelium, the fist cell layer in contact with these molecules, and the molecular mechanisms triggered by uremic toxins remain poorly understood. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PD fluids reduce peritoneal damage in mesothelial and endothelial (EC) cells. Their potential systemic effects were not studied so far. Here, we demonstrate, in a newly developed model system, the changes induced by chronic exposure to serum of PD patients in the proteome and secretome of endothelial cells, and the effects of cytoprotective additives. Method For modelling systemic conditions of PD patients, primary EC were cultured for 5 passages in medium containing 10% serum collected from PD patients (n = 26) during regular PET tests, or from healthy donors (n = 12). Cytoprotective additives were added in parallel experiments. Cells were stably labelled (SILAC) to differentiate cell and donor serum proteins and the cellular proteome and secretome profiles were analysed by quantitative mass spectrometry. Prior to analysis of the secretome, equalizer beads, to enrich low abundant and deplete high abundant proteins, were used. ECIS (Electric Cell-substrate Impedance Sensing), was used to measure barrier function, growth rate, and permeability. Results Proteome analysis revealed perturbation of major cellular processes by serum of PD patients including inflammatory related processes such TLR regulation and complement activation, as well membrane related processes such as extracellular matrix interactions and junctions, and plasma lipoprotein remodelling. Addition of LiCl counteracted cell-adhesion related proteins. ECIS analysis showed that in uremic conditions the EC monolayer has a decreased barrier function compared to healthy conditions, and LiCl partially restores the tightness of the membrane. Secretome analysis showed differentially regulated proteins related to oxidative stress, senescence-associated secretory phenotype (SASP), and apoptosis. Interestingly, in the secretome, LiCl addition counter regulated INHBA and tissue factor pathway inhibitor 2, both proteins related to vascular calcification. Conclusion Surprisingly few studies have analysed uremic effects on EC using proteomics approaches, and no reports of chronic settings, modelling the patient situation, are available. Our data demonstrates that EC react to serum factors of PD patients with increased inflammation, permeability and a secretory profile. Interestingly, our model reflects many of the known effects on the vasculature, but unravels the molecular mechanism that may induce those processes. We have also identified potential mechanisms by which the addition of cytoprotective additives may counteract some of the uremic effects systemically. Secretomics data identified several proteins secreted by EC that are regulated in uremia with potential for cellular crosstalk with other cells of the vasculature, showing the potential to identify therapeutic targets to reduce the cardiovascular risk of PD patients and current limitations of the therapy.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1465709-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Informa UK Limited ; 2022
    In:  Expert Review of Proteomics Vol. 19, No. 7-12 ( 2022-12-02), p. 289-296
    In: Expert Review of Proteomics, Informa UK Limited, Vol. 19, No. 7-12 ( 2022-12-02), p. 289-296
    Type of Medium: Online Resource
    ISSN: 1478-9450 , 1744-8387
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2022
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Nephrology Dialysis Transplantation Vol. 36, No. Supplement_1 ( 2021-05-29)
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2021-05-29)
    Abstract: The composition of all currently available peritoneal dialysis fluids (PDF) triggers morphological and functional changes in the peritoneal membrane. Periodic exposure leads to vasculopathy, hypervascularization, and diabetes-like damage of vessels of the peritoneal membrane, eventually leading to technique failure. Patients undergoing dialysis generally, have a high risk of cardiovascular events. It is currently unclear if there is a mechanistic link between peritoneal membrane failure and cardiovascular risk. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PDF reduce peritoneal damage. Here, we developed an experimental model for investigating effects of such additives on secretome-mediated signalling between cell-types of the peritoneal membrane which are relevant in the cardiovascular context. Method For modelling the peritoneal membrane in vitro, mesothelial (MC) and endothelial cells (EC) were co-cultured in transwell plates. MC were grown in the upper compartment and primary microvascular cells were grown in the lower compartment. MC were exposed to PDF with or without cytoprotective compounds (8 mM AlaGln in glucose-based PDF 3.86% or 10 mM LiCl in icodextrin-based PDF), while EC below were kept in medium. Cell damage was assessed by quantification of lactate-dehydrogenase (LDH) release, neutral red uptake and cell morphology. Proteome and secretome profiles were analysed for both cell-types in co-culture or separately with an isobaric-tag labelling approach with a multiplexed liquid chromatography/mass spectrometry (LC-MS) approach. Prior to analysis of the secretome a bead-based equalizer approach based on a combinatorial peptide ligand library (CPLL) was performed to enrich low abundant proteins. Results EC injury after PD-fluid exposure of MC was decreased with the addition of AlaGln or LiCl, showing a link between the individual cell outcomes. Proteome analysis revealed perturbation of major cellular processes including regulation of cell death and cytoskeleton re-organization, which characterize PDF cytotoxicity. Selected markers of angiogenesis, oxidative stress, cell junctions and transdifferentiation were counter-regulated by the additives. Co-cultured cells yielded differently regulated pathways following PDF exposure compared to separate culture. We were able to identify and quantify 334 secreted proteins in the co-culture system. The secretome analysis showed variation in several clinically relevant proteins and important extracellular processes such as extracellular matrix reorganization, vesicle transport or collagen deposition. Comparison to previously published abundance profiles of omental arteriolar proteins from paediatric PD patient and age-matched controls confirmed overlapping protein regulation between endothelial cells in vitro and in vivo. Conclusion This study shows that harmful effects of PDF-stressed MC also affect EC and elucidates potential mechanisms by which cytoprotective additives may counteract the signalling axis between local peritoneal damage and systemic vasculopathy. An in vitro co-culture system may be an attractive approach to simulate the close proximity of different cell types in the peritoneal membrane for testing direct and indirect effects of cytoprotective additives. Characterisation of PD-induced perturbations may allow identifying molecular mechanisms linking the peritoneal and cardiovascular context, offering therapeutic targets to reduce current limitations of PD and ultimately decreasing cardiovascular risk of dialysis patients.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1465709-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Nephrology Dialysis Transplantation Vol. 35, No. Supplement_3 ( 2020-06-01)
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 35, No. Supplement_3 ( 2020-06-01)
    Abstract: The composition of all currently available peritoneal dialysis (PD) fluids triggers morphological and functional changes in the peritoneal membrane. Periodic exposure leads to vasculopathy, hypervascularization, and diabetes-like damage of vessels, eventually leading to failure of the technique. Patients undergoing dialysis generally, have a high risk of cardiovascular events. It is currently unclear if there is a mechanistic link between peritoneal membrane failure and cardiovascular risk. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PDF reduce peritoneal damage. Here, we developed an experimental model for investigating effects of these cytoprotective additives in PDF in the cardiovascular context. Method For modelling the peritoneal membrane in vitro, mesothelial and endothelial cells were co-cultured in transwell plates. Mesothelial cells were grown in the upper compartment and primary human umbilical vein endothelial cells (HUVEc) or primary microvascular cells were grown in the lower compartment. PDF with or without cytoprotective compounds, was added to the upper compartment to only expose mesothelial cells directly to different dilutions of the fluid. Effects on cell damage was assessed by quantification of lactate-dehydrogenase (LDH) release and live-dead staining of cells. Proteome profiles were analysed for both cell-types separately and in combination using two-dimensional difference gel electrophoresis (2D-DiGE) and liquid chromatography coupled to mass spectrometry (LC-MS). In vitro findings were related to PD-induced arteriolar changes based on abundance profiles of micro-dissected omental arterioles of children treated with conventional PD-fluids and age-matched controls with normal renal function. Results Marked cellular injury of HUVEc after PD-fluid exposure was associated with a molecular landscape of the enriched biological process clusters ‘glucose catabolic process’, ‘cell redox homeostasis’, ‘RNA metabolic process’, ‘protein folding’, ‘regulation of cell death’, and ‘actin cytoskeleton reorganization’ that characterize PD-fluid cytotoxicity and counteracting cellular repair process respectively. PDF-induced cell damage was reduced by AlaGln and LiCl both in mesothelial and endothelial cells. Proteome analysis revealed perturbation of major cellular processes including regulation of cell death and cytoskeleton reorganization. Selected markers of angiogenesis, oxidative stress, cell junctions and transdifferentiation were counter-regulated by the additives. Co-cultured cells yielded differently regulated pathways following PDF exposure compared to separate culture. Comparison to human arterioles confirmed overlapping protein regulation between endothelial cells in vitro and in vivo, proving harmful effects of PD-fluids on endothelial cells leading to drastic changes of the cellular process landscape. Conclusion In summary, this study shows harmful effects of PD-fluids also effecting endothelial cells and elucidates potential mechanisms by which cytoprotective additives may counteract the signalling axis between local peritoneal damage and systemic vasculopathy. An in vitro co-culture system may be an attractive approach to simulate the peritoneal membrane for testing direct and indirect effects of cytoprotective additives in PDF. When cultured and stressed in close proximity cells may respond differently. Characterisation of PD-induced perturbations will allow identifying molecular mechanisms linking the peritoneal and cardiovascular context, offering therapeutic targets to reduce current limitations of PD and ultimately decreasing cardiovascular risk of dialysis patients.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1465709-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages