Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sensors, MDPI AG, Vol. 20, No. 11 ( 2020-06-05), p. 3209-
    Abstract: Over the last two decades, experimental studies in humans and other vertebrates have increasingly used muscle synergy analysis as a computational tool to examine the physiological basis of motor control. The theoretical background of muscle synergies is based on the potential ability of the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine the pathophysiological basis of specific motor symptoms in Parkinson’s disease (PD), including balance and gait disorders that are often unresponsive to treatment. The precise mechanisms contributing to these motor symptoms in PD remain largely unknown. A better understanding of the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms in PD. We first discuss the theoretical background and computational methods for muscle synergy extraction from physiological data. We then critically examine studies assessing muscle synergies in PD during different motor tasks including balance, gait and upper limb movements. Finally, we speculate about the prospects and challenges of muscle synergy analysis in order to promote future research protocols in PD.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 9 ( 2018-10-29)
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2564217-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Scientific Reports Vol. 8, No. 1 ( 2018-02-09)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-02-09)
    Abstract: The need to move over uneven terrain is a daily challenge. In order to face unexpected perturbations due to changes in the morphology of the terrain, the central nervous system must flexibly modify its control strategies. We analysed the local dynamic stability and the modular organisation of muscle activation (muscle synergies) during walking and running on an even- and an uneven-surface treadmill. We hypothesized a reduced stability during uneven-surface locomotion and a reorganisation of the modular control. We found a decreased stability when switching from even- to uneven-surface locomotion (p  〈  0.001 in walking, p = 0.001 in running). Moreover, we observed a substantial modification of the time-dependent muscle activation patterns (motor primitives) despite a general conservation of the time-independent coefficients (motor modules). The motor primitives were considerably wider in the uneven-surface condition. Specifically, the widening was significant in both the early (+40.5%, p  〈  0.001) and late swing (+7.7%, p = 0.040) phase in walking and in the weight acceptance (+13.6%, p = 0.006) and propulsion (+6.0%, p = 0.041) phase in running. This widening highlighted an increased motor output’s robustness (i.e. ability to cope with errors) when dealing with the unexpected perturbations. Our results confirmed the hypothesis that humans adjust their motor control strategies’ timing to deal with unsteady locomotion.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Physiology Vol. 12 ( 2021-11-2)
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 12 ( 2021-11-2)
    Abstract: In this paper we examined how runners with different initial foot strike pattern (FSP) develop their pattern over increasing speeds. The foot strike index (FSI) of 47 runners [66% initially rearfoot strikers (RFS)] was measured in six speeds (2.5–5.0 ms −1 ), with the hypotheses that the FSI would increase (i.e., move toward the fore of the foot) in RFS strikers, but remain similar in mid- or forefoot strikers (MFS) runners. The majority of runners (77%) maintained their original FSP by increasing speed. However, we detected a significant (16.8%) decrease in the FSI in the MFS group as a function of running speed, showing changes in the running strategy, despite the absence of a shift from one FSP to another. Further, while both groups showed a decrease in contact times, we found a group by speed interaction ( p & lt; 0.001) and specifically that this decrease was lower in the MFS group with increasing running speeds. This could have implications in the metabolic energy consumption for MFS-runners, typically measured at low speeds for the assessment of running economy.
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2564217-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Physiology Vol. 8 ( 2017-11-22)
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 8 ( 2017-11-22)
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2564217-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Physiology Vol. 14 ( 2023-6-12)
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 14 ( 2023-6-12)
    Abstract: Elite athletes are regularly exposed to high and repetitive mechanical stresses and impacts, resulting in high injury rates. The consequences of injury can range from time lost from training and competition to chronic physical and psychological burden, with no guarantee that the athlete will return to preinjury levels of sport activity and performance. Prominent predictors include load management and previous injury, highlighting the importance of the postinjury period for effective return to sport (RTS). Currently, there is conflicting information on how to choose and assess the best reentry strategy. Treating RTS as a continuum, with controlled progression of training load and complexity, seems to provide benefits in this process. Furthermore, objectivity has been identified as a critical factor in improving the effectiveness of RTS. We propose that assessments derived from biomechanical measurements in functional settings can provide the objectivity needed for regular biofeedback cycles. These cycles should aim to identify weaknesses, customize the load, and inform on the status of RTS progress. This approach emphasizes individualization as the primary determinant of RTS and provides a solid foundation for achieving it.
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2564217-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: eLife, eLife Sciences Publications, Ltd, Vol. 12 ( 2023-04-26)
    Abstract: Postoperative knee instability is one of the major reasons accounting for unsatisfactory outcomes, as well as a major failure mechanism leading to total knee arthroplasty (TKA) revision. Nevertheless, subjective knee instability is not well defined clinically, plausibly because the relationships between instability and implant kinematics during functional activities of daily living remain unclear. Although muscles play a critical role in supporting the dynamic stability of the knee joint, the influence of joint instability on muscle synergy patterns is poorly understood. Therefore, this study aimed to understand the impact of self-reported joint instability on tibiofemoral kinematics and muscle synergy patterns after TKA during functional gait activities of daily living. Methods: Tibiofemoral kinematics and muscle synergy patterns were examined during level walking, downhill walking, and stair descent in eight self-reported unstable knees after TKA (3M:5F, 68.9 ± 8.3 years, body mass index [BMI] 26.1 ± 3.2 kg/m 2 , 31.9 ± 20.4 months postoperatively), and compared against 10 stable TKA knees (7M:3F, 62.6 ± 6.8 years, 33.9 ± 8.5 months postoperatively, BMI 29.4 ± 4.8 kg/m 2 ). For each knee joint, clinical assessments of postoperative outcome were performed, while joint kinematics were evaluated using moving video-fluoroscopy, and muscle synergy patterns were recorded using electromyography. Results: Our results reveal that average condylar A-P translations, rotations, as well as their ranges of motion were comparable between stable and unstable groups. However, the unstable group exhibited more heterogeneous muscle synergy patterns and prolonged activation of knee flexors compared to the stable group. In addition, subjects who reported instability events during measurement showed distinct, subject-specific tibiofemoral kinematic patterns in the early/mid-swing phase of gait. Conclusions: Our findings suggest that accurate movement analysis is sensitive for detecting acute instability events, but might be less robust in identifying general joint instability. Conversely, muscle synergy patterns seem to be able to identify muscular adaptation associated with underlying chronic knee instability. Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2023
    detail.hit.zdb_id: 2687154-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Bioengineering and Biotechnology Vol. 9 ( 2021-12-16)
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 9 ( 2021-12-16)
    Abstract: Stability training in the presence of perturbations is an effective means of increasing muscle strength, improving reactive balance performance, and reducing fall risk. We investigated the effects of perturbations induced by an unstable surface during single-leg landings on the mechanical loading and modular organization of the leg muscles. We hypothesized a modulation of neuromotor control when landing on the unstable surface, resulting in an increase of leg muscle loading. Fourteen healthy adults performed 50 single-leg landings from a 30 cm height onto two ground configurations: stable solid ground (SG) and unstable foam pads (UG). Ground reaction force, joint kinematics, and electromyographic activity of 13 muscles of the landing leg were measured. Resultant joint moments were calculated using inverse dynamics and muscle synergies with their time-dependent (motor primitives) and time-independent (motor modules) components were extracted via non-negative matrix factorization. Three synergies related to the touchdown, weight acceptance, and stabilization phase of landing were found for both SG and UG. When compared with SG, the motor primitive of the touchdown synergy was wider in UG ( p & lt; 0.001). Furthermore, in UG the contribution of gluteus medius increased ( p = 0.015) and of gastrocnemius lateralis decreased ( p & lt; 0.001) in the touchdown synergy. Weight acceptance and stabilization did not show any statistically significant differences between the two landing conditions. The maximum ankle and hip joint moment as well as the rate of ankle, knee, and hip joint moment development were significantly lower ( p & lt; 0.05) in the UG condition. The spatiotemporal modifications of the touchdown synergy in the UG condition highlight proactive adjustments in the neuromotor control of landings, which preserve reactive adjustments during the weight acceptance and stabilization synergies. Furthermore, the performed proactive control in combination with the viscoelastic properties of the soft surface resulted in a reduction of the mechanical loading in the lower leg muscles. We conclude that the use of unstable surfaces does not necessarily challenge reactive motor control nor increase muscle loading per se. Thus, the characteristics of the unstable surface and the dynamics of the target task must be considered when designing perturbation-based interventions.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2719493-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 227, No. 7 ( 2024-04-01)
    Abstract: Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.2±5.2 years) participated in the study. Mediolateral and anteroposterior unpredictable and predictable perturbations during walking were introduced using a treadmill. Muscle synergies were extracted from the electromyographic activity of 13 lower limb muscles using Gaussian non-negative matrix factorization. The four basic synergies responsible for unperturbed walking (weight acceptance, propulsion, early swing and late swing) were preserved in all applied gait perturbations, yet their temporal recruitment and muscle contribution in each synergy were modified (P & lt;0.05). These modifications were observed for up to four recovery steps and were more pronounced (P & lt;0.05) following unpredictable perturbations. The recruitment of the four basic walking synergies in the perturbed and recovery gait cycles indicates a robust neuromotor control of locomotion by using activation patterns of a few and well-known muscle synergies with specific adjustments within the synergies. The selection of pre-existing muscle synergies while adjusting the time of their recruitment during challenging locomotor conditions may improve the effectiveness to deal with perturbations and promote the transfer of adaptation between different kinds of perturbations.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2024
    detail.hit.zdb_id: 1413561-9
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Applied Bionics and Biomechanics, Wiley, Vol. 2020 ( 2020-06-23), p. 1-18
    Abstract: In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes’ performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes’ performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.
    Type of Medium: Online Resource
    ISSN: 1176-2322 , 1754-2103
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2232110-X
    detail.hit.zdb_id: 2179924-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages