Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1987
    In:  Proceedings of the National Academy of Sciences Vol. 84, No. 23 ( 1987-12), p. 8488-8492
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 84, No. 23 ( 1987-12), p. 8488-8492
    Abstract: A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1987
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Rockefeller University Press ; 1982
    In:  The Journal of cell biology Vol. 94, No. 2 ( 1982-08-01), p. 455-465
    In: The Journal of cell biology, Rockefeller University Press, Vol. 94, No. 2 ( 1982-08-01), p. 455-465
    Abstract: Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1982
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1985
    In:  Proceedings of the National Academy of Sciences Vol. 82, No. 12 ( 1985-06), p. 4152-4156
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 82, No. 12 ( 1985-06), p. 4152-4156
    Abstract: Microtubules forming within the mouse egg during fertilization are required for the movements leading to the union of the sperm and egg nuclei (male and female pronuclei, respectively). In the unfertilized oocyte, microtubules are predominantly found in the arrested meiotic spindle. At the time for sperm incorporation, a dozen cytoplasmic asters assemble, often associated with the pronuclei. As the pronuclei move to the egg center, these asters enlarge into a dense array. At the end of first interphase, the dense array disassembles and is replaced by sheaths of microtubules surrounding the adjacent pronuclei. Syngamy (pronuclear fusion) is not observed; rather the adjacent paternal and maternal chromosome sets first meet at metaphase. The mitotic apparatus emerges from these perinuclear microtubules and is barrel-shaped and anastral, reminiscent of plant cell spindles; the sperm centriole does not nucleate mitotic microtubules. After cleavage, monasters extend from each blastomere nucleus. The second division mitotic spindles also have broad poles, though by third and later divisions the spindles are typical for higher animals, with narrow mitotic poles and fusiform shapes. Colcemid, griseofulvin, and nocodazole inhibit the microtubule formation and prevent the movements leading to pronuclear union; the meiotic spindle is disassembled, and the maternal chromosomes are scattered throughout the oocyte cortex. These results indicate that microtubules forming within fertilized mouse oocytes are required for the union of the sperm and egg nuclei and raise questions about the paternal inheritance of centrioles in mammals.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1985
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 1982
    In:  Cell Biology International Reports Vol. 6, No. 8 ( 1982-08), p. 717-724
    In: Cell Biology International Reports, Wiley, Vol. 6, No. 8 ( 1982-08), p. 717-724
    Type of Medium: Online Resource
    ISSN: 0309-1651
    Language: English
    Publisher: Wiley
    Publication Date: 1982
    detail.hit.zdb_id: 2197149-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1991
    In:  Proceedings of the National Academy of Sciences Vol. 88, No. 15 ( 1991-08), p. 6785-6789
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 88, No. 15 ( 1991-08), p. 6785-6789
    Abstract: The centrosome, the microtubule-organizing center of the cell, is introduced typically by the sperm at fertilization. In some mammals, however, this paternal pattern of inheritance appears to be violated. The hypothesis that the centrosome is maternally inherited was tested during parthenogenesis, polyspermy, and polygyny as well as after recovery from microtubule inhibition at first mitosis. During parthenogenesis the paternal contribution was absent, and in polyspermy the paternal contribution was multiplied. Haploid and diploid parthenogenotes as well as polyspermic and digynic fertilized eggs each segregated their centrosomes to organize a bipolar mitotic apparatus. Oocytes recovering from a nocodazole block formed two normal bipolar mitotic apparatus; the paternal chromosomes aligned at one spindle equator, while the maternal chromosomes were found at the other. These results show that the centrosome is maternally inherited from cytoplasmic sites in the mouse. The evolutionary switch from paternal to maternal inheritance in mammals might be related to the additional dangers that parthenogenesis represents: a threat to the life of the mother as well as to the life of the fetus.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1991
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 1987
    In:  Cell Biology International Reports Vol. 11, No. 8 ( 1987-08), p. 605-614
    In: Cell Biology International Reports, Wiley, Vol. 11, No. 8 ( 1987-08), p. 605-614
    Type of Medium: Online Resource
    ISSN: 0309-1651
    Language: English
    Publisher: Wiley
    Publication Date: 1987
    detail.hit.zdb_id: 2197149-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 1992
    In:  Advances in Space Research Vol. 12, No. 1 ( 1992-1), p. 167-173
    In: Advances in Space Research, Elsevier BV, Vol. 12, No. 1 ( 1992-1), p. 167-173
    Type of Medium: Online Resource
    ISSN: 0273-1177
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1992
    detail.hit.zdb_id: 2023311-5
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1986
    In:  Proceedings of the National Academy of Sciences Vol. 83, No. 1 ( 1986-01), p. 105-109
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 83, No. 1 ( 1986-01), p. 105-109
    Abstract: The forms and locations of centrosomes in mouse oocytes and in sea urchin eggs were followed through the whole course of fertilization and first cleavage by immunofluorescence microscopy. Centrosomes were identified with an autoimmune antiserum to centrosomal material. Staining of the same preparations with tubulin antibody and with the DNA dye Hoechst 33258 allowed the correlation of the forms of the centrosomes with the microtubule structures that they generate and with the stages of meiosis, syngamy, and mitosis. The results with sea urchin eggs conform to Boveri's view on the paternal origin of the functional centrosomes. Centrosomes are seen in spermatozoa and enter the egg at fertilization. Initially, the centrosomes are compact, but as the eggs enter the mitotic cycle the forms of the centrosomes go through a cycle in which they spread during interphase, apparently divide, and condense into two compact poles by metaphase. In anaphase, they spread to form flat poles. In telophase and during reconstitution of the daughter nuclei, the centrosomal material is disposed as hemispherical caps around the poleward surfaces of the nuclei. Mouse sperm lack centrosomal antigen. In the unfertilized mouse oocyte, the meiotic spindle poles are displayed as broad-beaded centrosomes. In addition, centrosomal material is detected in the cytoplasm as particles, about 16 in number, which are foci of small aster-like arrays of microtubules. The length and number of astral microtubules correlate with the size of the centrosomal foci. After sperm incorporation, as the pronuclei develop and more cytoplasmic microtubules assemble, a few of the foci associate with the peripheries of the nuclei. The number of foci multiplies during the first cell cycle. At the end of interphase, all of the centrosomal foci have concentrated on the nuclear peripheries and the cytoplasmic microtubules have disappeared. At prophase, the centrosomes are seen as two irregular clusters, marking the poles which, at metaphase and anaphase, appear as rough bands with foci, and the spindle is typically barrel-shaped. At telophase, the centrosomes are seen as arcs that lie on the nuclear peripheries after cleavage. The ordering of microtubules in all the stages reflects the shapes of the centrosomes. The findings on the sea urchin confirm the classical theory of the paternal origin of centrosomes and contrast with observations tracing the mitotic poles of the mouse egg to maternal centrosomal material. This evidence strengthens the conclusion that mouse centrosomes derive from the oocyte.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1986
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1972
    In:  Journal of Geophysical Research Vol. 77, No. 25 ( 1972-09-01), p. 4858-4863
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 77, No. 25 ( 1972-09-01), p. 4858-4863
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1972
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 1987
    In:  Journal of Cellular Physiology Vol. 133, No. 1 ( 1987-10), p. 14-24
    In: Journal of Cellular Physiology, Wiley, Vol. 133, No. 1 ( 1987-10), p. 14-24
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1987
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages