Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 869-869
    Abstract: Inhibitors of histone deacetylases (HDACs) like valproic acid (VPA) display activity in murine leukemia models and induce apoptosis and myeloid differentiation of acute myeloid leukemia (AML) blasts. While recently several studies examined the underlying VPA-mediated mechanisms, until today not many genes have been identified whose expression is altered by VPA treatment. Recently, microRNAs (miRs), a novel abundant class of negative gene regulators, have been shown to control a wide range of biological functions such as proliferation, differentiation and apoptosis by either translational repression or by mRNA cleavage or miR-mediated decay of the respective target mRNA. Furthermore, deregulated miR expression has been associated with various human cancers including leukemia. This led us to investigate whether VPA treatment of AML cells affects miR-expression which in turn might influence the level of miR target genes involved in VPA effects. First, we identified an in vitro miR VPA-response signature by profiling miR expression in 4 different myeloid leukemia cell lines following 48 hours of VPA treatment (Ambion microarray platform comprising 281 human miRs). In parallel, we profiled gene expression by using both cDNA microarrays and Affymetrix U133Aplus2.0 GeneChips. 13 miRs were found to be differentially expressed, 10 miRs were down-regulated and 3 miRs were up-regulated by VPA. Gene expression profiling revealed several hundred differentially regulated genes containing some known VPA influenced targets like e.g. cyclin-dependent kinase inhibitor CDKN1A coding for p21. To correlate miR and gene expression, we next searched for an enrichment of putative miR target genes of the VPA-regulated miRs in the VPA-induced gene expression pattern. Interestingly, there were several candidates for which miR expression in response to VPA inversely correlated with gene expression of the respective targets. These included genes involved in DNA damage checkpoint like e.g. CHEK1 which was found to be down-regulated in response to VPA and which is a predicted target of miR-15a and miR-16, both found to be up-regulated by VPA treatment. In addition, potential miR-targets included genes known to be regulated by HDAC inhibitors in cancer cells like e.g. the homeobox gene HOXA1 found to be up-regulated in response to VPA and being a putative target of miR-99a, found to be down-regulated by VPA. Our study is the first to show that VPA treatment significantly affects expression levels of several miRs in myeloid cell lines, and based on the correlation of VPA-induced miR and gene expression patterns we could identify putative miR-targets that included genes with tumorigenic relevance. While it remains to be determined whether VPA-induced miR-mediated mRNA cleavage or decay of the respective target mRNAs is involved in leukemogenesis, our data nevertheless provide new insights into VPA-induced mechanisms of myeloid differentiation and into deregulated miR expression in leukemia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 3163-3163
    Abstract: Core binding factor (CBF) leukemias, characterized by either inv(16)/t(16;16) or t(8;21), constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, there exists substantial biological and clinical heterogeneity within these cytogenetic groups, which is not fully reflected by the current classification system. Recently, the identification of novel molecular markers, like the gain-of-function KIT mutations in exons 8 and 17 have been shown to confer higher relapse risk and adversely influence overall survival (Paschka et al, J Clin Onc 2006). To further investigate whether the presence of KIT mutations leads to a characteristic gene expression pattern in CBF AML we profiled gene expression in a large series (n=83) of AML patients with CBF leukemia (KIT WT n=59, KIT mutated n=24). By supervised hierarchical clustering we were able to define a KIT mutation associated gene signature consisting of 168 genes (p=0.005). Gene set enrichment analyses revealed several groups of pathways to be differentially regulated, thereby likely reflecting differences in pathogenic mechanisms which might lead to distinct prognoses of different subgroups of CBF leukemias. For example, in the KIT mutated group, cellular stress response pathways, as for example NFkappaB-signaling and TNF/stress related signaling, were downregulated, whereas the motility-associated Y branching of actin filaments was upregulated. In general, a great overlap of deregulated pathways was found between the overall set and the cytogenetic CBF subgroups inv(16) and t(8;21), respectively. The same was true for KIT mutations in exons 8 and 17 in comparison to all KIT mutations. However, as all these subgroups are characterized by distinct biology and clinics, each subgroup was also associated with a number of deregulated pathways that were not significantly affected in other subgroups. Apart from the expected upregulation of KIT in the KIT mutated group, we also found e.g. a down-regulation of TNF, NFkappaB and PRKCA. Overall, KIT mutations seem to entail a proliferative advantage (higher blast counts in KIT mutated cases; p=0.0015 and p=0.0157 for peripheral blood and bone marrow blast counts, respectively), an increased stem cell self renewal as suggested by the upregulation of LRP6 of the Wnt/LRP6 Signaling pathway and a deregulation of apoptosis. This latter finding is reflected by the NFkappaB-signaling pathway and TNF/stress related signaling, mentioned above, and also, e.g. by the upregulation of the Apoptotic Signaling in Response to DNA Damage pathway in KIT mutated inv(16) cases. Thus, gene expression profiling reveals novel insights into the potential pathomechanism of KIT mutations in CBF leukemias. However, while the leukemogenic relevance of these signatures remains to be validated, their existence nevertheless supports a prognostically relevant biological basis for the heterogeneity observed in CBF leukemia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages