Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Years
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 370, No. 6515 ( 2020-10-23)
    Abstract: Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)– and interferon regulatory factor 7 (IRF7)–dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6632 ( 2023-02-10)
    Abstract: Multisystem inflammatory syndrome in children (MIS-C) is a severe, unexplained complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with an estimated prevalence of ~1 per 10,000 infected children. It typically occurs 4 weeks after infection, without hypoxemic pneumonia. Affected children present with fever, rash, abdominal pain, myocarditis, and other clinical features reminiscent of Kawasaki disease, including lymphadenopathy, coronary aneurysm, and high levels of biological markers of acute inflammation. Sustained monocyte activation is consistently reported as a key immunological feature of MIS-C. A more specific immunological abnormality is the polyclonal expansion of CD4 + and CD8 + T cells bearing the T cell receptor Vβ21.3. The root cause of MIS-C and its immunological and clinical features remains unknown. RATIONALE We hypothesized that monogenic inborn errors of immunity to SARS-CoV-2 may underlie MIS-C in some children. We further hypothesized that the identification of these inborn errors would provide insights into the molecular and cellular mechanisms underlying its immunological and clinical phenotypes. Finally, we hypothesized that a genetic and mechanistic understanding of a few patients would provide a proof of principle that would facilitate studies in other patients. We performed whole-exome or whole-genome sequencing on 558 internationally recruited patients with MIS-C (aged 3 months to 19 years). We searched for rare nonsynonymous biallelic variants of protein-coding genes, testing a hypothesis of genetic homogeneity. RESULTS We found autosomal recessive deficiencies of OAS1 (2′-5′-oligoadenylate synthetase 1), OAS2, or RNase L (ribonuclease L) in five unrelated children of four different ancestries with MIS-C (~1% of our cohort). There were no similar defects in a cohort of 1288 individuals (aged 6 months to 99 years) with asymptomatic or mild infection ( P = 0.001) or 334 young patients (aged 0 to 21 years) with asymptomatic or mild infection or COVID-19 pneumonia ( P = 0.046). The estimated cumulative frequency of these defects in the general population was ~0.00013. The type I interferon (IFN)–inducible double-stranded RNA (dsRNA)–sensing proteins OAS1 and OAS2 generate 2′-5′-linked oligoadenylates (2-5A), which activate the antiviral single-stranded RNA (ssRNA)–degrading RNase L, particularly in mononuclear phagocytes. Consistent with the absence of pneumonia in these patients, epithelial cells and fibroblasts defective for this pathway restricted SARS-CoV-2 normally. This contrasted with interferon alpha and beta receptor subunit 1 (IFNAR1)–deficient cells from patients prone to hypoxemic pneumonia without MIS-C. Monocytic cell lines with genetic deficiencies of OAS1, OAS2, or RNase L displayed excessive inflammatory cytokine production in response to intracellular dsRNA. Cytokine production by RNase L–deficient cells was impaired by melanoma differentiation-associated protein 5 (MDA5) or retinoic acid–inducible gene I (RIG-I) deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Exogenous 2-5A suppressed inflammatory responses to these stimuli in control and OAS1-deficient cells but not in RNase L–deficient cells. Finally, monocytic cell lines, primary monocytes, and monocyte-derived dendritic cells with genetic deficiencies of OAS1, OAS2, or RNase L displayed exaggerated inflammatory responses to SARS-CoV-2 as well as SARS-CoV-2–infected cells and their RNA. CONCLUSION We report autosomal recessive deficiencies of OAS1, OAS2, or RNase L in ∼1% of an international cohort of MIS-C patients. The cytosolic OAS–RNase L pathway suppresses RIG-I/MDA5–MAVS–mediated inflammation in dsRNA-stimulated mononuclear phagocytes. Single-gene recessive inborn errors of the OAS–RNase L pathway unleash the production of SARS-CoV-2–triggered inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C. OAS–RNase L deficiency in MIS-C. dsRNAs from SARS-CoV-2 or SARS-CoV-2–permissive cells engulfed by mononuclear phagocytes simultaneously activate the RIG-I/MDA5–MAVS pathway, inducing inflammatory cytokine production, and the OAS–RNase L pathway, exerting posttranscriptional control over inflammatory cytokine production. OAS–RNase L deficiency results in excessive inflammatory cytokine production by myeloid cells, triggering MIS-C, including lymphoid cell activation and multiple tissue lesions. NK, natural killer; IRF3, interferon regulatory factor 3; NF-κB, nuclear factor κB.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 218, No. 7 ( 2021-07-05)
    Abstract: Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti–IFN-β and another anti–IFN-ε, but none had anti–IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2021
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 11, No. 10 ( 2020-10-17)
    Abstract: Since metastatic colorectal cancer (CRC) is a leading cause of cancer-related death, therapeutic approaches overcoming primary and acquired therapy resistance are an urgent medical need. In this study, the efficacy and toxicity of high-affinity inhibitors targeting antiapoptotic BCL-2 proteins (BCL-2, BCL-XL, and MCL-1) were evaluated. By RNA sequencing analysis of a pan-cancer cohort comprising 〉 1500 patients and subsequent prediction of protein activity, BCL-XL was identified as the only antiapoptotic BCL-2 protein that is overactivated in CRC. Consistently, pharmacologic and genetic inhibition of BCL-XL induced apoptosis in human CRC cell lines. In a combined treatment approach, targeting BCL-XL augmented the efficacy of chemotherapy in vitro, in a murine CRC model, and in human ex vivo derived CRC tissue cultures. Collectively, these data show that targeting of BCL-XL is efficient and safe in preclinical CRC models, observations that pave the way for clinical translation.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2541626-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 71, No. 12 ( 2022-12), p. 2913-2928
    Abstract: Wilms’ tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01 B in five elderly AML patients (median age 69 years, range 63–75) receiving a total of 62 vaccinations (median 18, range 3–20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4 + T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated. To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 8 ( 2017-12-06)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Liver International, Wiley, Vol. 42, No. 12 ( 2022-12), p. 2855-2870
    Abstract: Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti‐apoptotic Bcl‐2 proteins (Bcl‐2, Bcl‐x L , Mcl‐1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl‐2 proteins were analysed in a pan‐cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial ( n  = 1140, CCA n  = 72) via RNA‐sequencing and transcriptome‐based protein activity interference revealing high ranks of CCA for Bcl‐x L and Mcl‐1. Expression of Bcl‐x L , Mcl‐1, and Bcl‐2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative‐RT‐PCR. Immunohistochemistry confirmed the upregulation of Bcl‐x L and Mcl‐1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl‐x L (Wehi‐539), of Mcl‐1 (S63845), and Bcl‐2 (ABT‐199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl‐x L induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl‐x L and Mcl‐1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl‐2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl‐x L in CCA depending on the CCA subtype. Collectively, these observations identify Bcl‐x L as a key protein in cell death resistance of CCA and may pave the way for clinical application.
    Type of Medium: Online Resource
    ISSN: 1478-3223 , 1478-3231
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2124684-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1278-1278
    Abstract: Background Vaccination (vac) strategies to maintain remissions in AML have been pursued for decades. The usage of recombinant proteins instead of peptides allows a potential immune response to multiple epitopes, hence could be offered to all patients (pts) independent of HLA expression. Wilms' tumor 1 (WT1) protein is highly immunogenic and frequently overexpressed in AML, thus ranked as a very promising target for novel immunotherapies. Here we report a single-center experience of a phase I/II clinical trial (NCT01051063) of a first-in-human vac strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01 B in 5 elderly AML pts. Patients and Methods Key eligibility criteria: overexpression of WT1 transcripts in AML blasts at diagnosis (qRT-PCR); 1 or 2 induction chemotherapies, with partial remission (PR) or morphologic complete remission with incomplete blood count recovery (CRi). The vaccine consisted of WT1-A10, a truncated WT-1 protein retaining the N-terminus (amino acids 2-281) of full length WT1 protein (429 aa) linked to the first 11 amino acids of trimethylamine N-oxide reductase signal peptide via one histidine residue combined with the liquid AS01 B adjuvant. AS01 B is an Adjuvant System containing MPL (3-O-desacyl-4´-monophosphoryl lipid A), QS-21 (Quillaja saponaria Molina, fraction 21) and liposome (50µg MPL and 50µg QS-21). One human dose of WT1-A10 + AS01 B contained 200 μg of WT1-A10 antigen. Pts received the vaccine by i.m. injection. To assess cellular response, antigen-specific stimulation of cultured PBMCs was performed with a pool of 123 15mer peptides covering the entire WT1 (1μg/ml/peptide), together with irrelevant re-stimulation plus negative control peptide. CD4 + and CD8 + T cells were serially assessed by intracellular flow cytometry for their ability to produce both IFN-γ and TNF upon antigen stimulation. Results A total of 5 pts (median age 69, range 63-75) were enrolled on the WT1 protein-based vac study at our institution (Table 1), receiving a total of 62 vac after a median of 3 courses (1-5) of standard chemotherapy. The repeated vac had an acceptable safety profile and were thus well tolerated. 2/5 pts experienced therapy-related toxicity, injection site pain (CTCAE v.3, grade 2) and injection site inflammation (CTCAE v.3, grade 1). Symptoms were of mild / moderate severity and resolved completely. No hematologic toxicity was noted. With a median progression-free survival of 28.8 mths (range 1-59) and median overall survival (OS) of 35.4 mths (range 3-75) from the 1st vac, this older patient cohort showed above-average clinical outcome (Table 1), pointing to a potential clinical efficacy of WT1-based vac therapy. All vaccinated pts showed highly elevated WT1 ratios before WT1-based vac therapy and normal levels after vac (Fig. 1A). Two pts demonstrated early relapse after 3 WT1 protein-based vac, and clinical benefit was observed in 3 pts: one achieved complete and sustained measurable residual disease clearance (NPM1 ratios) during WT1 vac, resulting in molecular CR at the 18th vac. The pt died from unrelated reasons 5.5 years after initial diagnosis of AML, 3.5 years after the last WT1 vac, with continued molecular CR. One pt maintained long-term hematological and molecular remission over 59 mths, until molecular relapse occurred 11 mths after the final, 21 st vac. Interestingly, in one case, a complete clonal switch occurred at hematologic relapse following 18 vac, with loss of WT1 overexpression: while the clone at initial diagnosis harbored FLT3, NPM1 and SRSF2 mutations, BRAF, KRAS and STAG2 mutations were detected at relapse (Fig. 1B), pointing to an ongoing suppression of the WT1 expressing AML clone. Flow cytometry studies were conducted in one pt to elucidate specific cellular immune responses. We noted CD4 + T cell immune responses by strong IFN-γ and TNF expression (Fig. 1C), suggestive of efficient immune stimulation post-vac, while CD8 + T cells failed to upregulate these key cytokines. Conclusions This vac strategy showed good feasibility, with a very acceptable safety profile, and appeared to extend remissions beyond the expected duration, together with MRD clearance. Thus, our data provide evidence of potential clinical efficacy of WT1 protein-based vac therapy in AML pts, making this maintenance approach an attractive alternative to more complex strategies, particularly in elderly pts with comorbidities. Figure 1 Figure 1. Disclosures Döhner: Abbvie: Consultancy, Honoraria; Jazz Roche: Consultancy, Honoraria; Daiichi Sankyo: Honoraria, Other: Advisory Board; Janssen: Honoraria, Other: Advisory Board; Celgene/BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Astellas: Research Funding; Agios and Astex: Research Funding. Schmitt: MSD: Membership on an entity's Board of Directors or advisory committees; TolerogenixX: Current holder of individual stocks in a privately-held company; Bluebird Bio: Other: Travel grants; Hexal: Other: Travel grants, Research Funding; Novartis: Other: Travel grants, Research Funding; Kite Gilead: Other: Travel grants; Apogenix: Research Funding. Lübbert: Teva: Research Funding; Janssen: Research Funding; Cheplapharm: Research Funding; Aristopharm: Research Funding; Syros: Honoraria; Pfizer: Honoraria; Janssen: Honoraria, Research Funding; Imago BioSciences: Honoraria; Hexal: Honoraria; Astex: Honoraria; Abbvie: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 3 ( 2020-02-07), p. 1099-
    Abstract: Autophagy is a catabolic process that enables cells to degrade obsolete content and refuel energy depots. In colorectal cancer (CRC) autophagy has been shown to promote tumorigenesis through energy delivery in the condition of uncontrolled proliferation. With this study, we aimed at evaluating whether autophagy sustains CRC cell viability and if it impacts therapy resistance. Initially, a colorectal cancer tissue micro array, containing mucosa (n = 10), adenoma (n = 18) and adenocarcinoma (n = 49) spots, was stained for expression of essential autophagy proteins LC3b, Atg7, p62 and Beclin-1. Subsequently, central autophagy proteins were downregulated in CRC cells using siRNA technology. Viability assays, flow cytometry and immunoblotting were performed and three-dimensional cell culture was utilized to study autophagy in a tissue mimicking environment. In our study we found an upregulation of Atg7 in CRC. Furthermore, we identified Atg7 as crucial factor within the autophagy network for CRC cell viability. Its disruption induced cell death via triggering apoptosis and in combination with conventional chemotherapy it exerted synergistic effects in inducing CRC cell death. Cell death was strictly dependent on nuclear LC3b, since simultaneous knockdown of Atg7 and LC3b completely restored viability. This study unravels a novel cell death preventing function of Atg7 in interaction with LC3b, thereby unmasking a promising therapeutic target in CRC.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 15, No. 12 ( 2020-12-10), p. e0243646-
    Abstract: In clinical practice range of motion (RoM) is usually assessed with low-cost devices such as a tape measure (TM) or a digital inclinometer (DI). However, the intra- and inter-rater reliability of typical RoM tests differ, which impairs the evaluation of therapy progress. More objective and reliable kinematic data can be obtained with the inertial motion capture system (IMC) by Xsens. The aim of this study was to obtain the intra- and inter-rater reliability of the TM, DI and IMC methods in five RoM tests: modified Thomas test (DI), shoulder test modified after Janda (DI), retroflexion of the trunk modified after Janda (DI), lateral inclination (TM) and fingertip-to-floor test (TM). Methods Two raters executed the RoM tests (TM or DI) in a randomized order on 22 healthy individuals while, simultaneously, the IMC data (Xsens MVN) was collected. After 15 warm-up repetitions, each rater recorded five measurements. Findings Intra-rater reliabilities were (almost) perfect for tests in all three devices (ICCs 0.886–0.996). Inter-rater reliability was substantial to (almost) perfect in the DI (ICCs 0.71–0.87) and the IMC methods (ICCs 0.61–0.993) and (almost) perfect in the TM methods (ICCs 0.923–0.961). The measurement error (ME) for the tests measured in degree (°) was 0.9–3.3° for the DI methods and 0.5–1.2° for the IMC approaches. In the tests measured in centimeters the ME was 0.5–1.3cm for the TM methods and 0.6–2.7cm for the IMC methods. Pearson correlations between the results of the DI or the TM respectively with the IMC results were significant in all tests except for the shoulder test on the right body side (r = 0.41–0.81). Interpretation Measurement repetitions of either one or multiple trained raters can be considered reliable in all three devices.
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2020
    detail.hit.zdb_id: 2267670-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages