Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Alzheimer's Research & Therapy, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2023-02-28)
    Abstract: In preclinical Alzheimer’s disease, it is unclear why some individuals with amyloid pathologic change are asymptomatic (stage 1), whereas others experience subjective cognitive decline (SCD, stage 2). Here, we examined the association of stage 1 vs. stage 2 with structural brain reserve in memory-related brain regions. Methods We tested whether the volumes of hippocampal subfields and parahippocampal regions were larger in individuals at stage 1 compared to asymptomatic amyloid-negative older adults (healthy controls, HCs). We also tested whether individuals with stage 2 would show the opposite pattern, namely smaller brain volumes than in amyloid-negative individuals with SCD. Participants with cerebrospinal fluid (CSF) biomarker data and bilateral volumetric MRI data from the observational, multi-centric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study were included. The sample comprised 95 amyloid-negative and 26 amyloid-positive asymptomatic participants as well as 104 amyloid-negative and 47 amyloid-positive individuals with SCD. Volumes were based on high-resolution T2-weighted images and automatic segmentation with manual correction according to a recently established high-resolution segmentation protocol. Results In asymptomatic individuals, brain volumes of hippocampal subfields and of the parahippocampal cortex were numerically larger in stage 1 compared to HCs, whereas the opposite was the case in individuals with SCD. MANOVAs with volumes as dependent data and age, sex, years of education, and DELCODE site as covariates showed a significant interaction between diagnosis (asymptomatic versus SCD) and amyloid status (Aß42/40 negative versus positive) for hippocampal subfields. Post hoc paired comparisons taking into account the same covariates showed that dentate gyrus and CA1 volumes in SCD were significantly smaller in amyloid-positive than negative individuals. In contrast, CA1 volumes were significantly ( p  = 0.014) larger in stage 1 compared with HCs. Conclusions These data indicate that HCs and stages 1 and 2 do not correspond to linear brain volume reduction. Instead, stage 1 is associated with larger than expected volumes of hippocampal subfields in the face of amyloid pathology. This indicates a brain reserve mechanism in stage 1 that enables individuals with amyloid pathologic change to be cognitively normal and asymptomatic without subjective cognitive decline.
    Type of Medium: Online Resource
    ISSN: 1758-9193
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2506521-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurology, Springer Science and Business Media LLC, Vol. 271, No. 10 ( 2024-10), p. 6991-6999
    Abstract: Multiple system atrophy (MSA), an atypical parkinsonian syndrome, is a rapidly progressive neurodegenerative disease with currently no established fluid biomarkers available. MSA is characterized by an oligodendroglial α-synucleinopathy, progressive neuronal cell loss and concomitant astrocytosis. Here, we investigate glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as fluid biomarkers for differential diagnosis, assessment of clinical disease severity and prediction of disease progression in MSA. Methods GFAP and NfL levels were analyzed in plasma and CSF samples of 47 MSA patients as well as 24 Parkinson’s disease (PD) and 25 healthy controls (HC) as reference cohorts. In MSA, biomarker levels were correlated to baseline and longitudinal clinical disease severity (UMSARS scores). Results In MSA, GFAP levels in CSF and plasma predicted baseline clinical disease severity as indicated by UMSARS scores, while NfL levels predicted clinical disease progression as indicated by longitudinal changes in UMSARS scores. Cross-sectionally, NfL levels in CSF and plasma were significantly elevated in MSA compared to both PD and HC. Receiver operating curves (ROC) indicated high diagnostic accuracy of NfL for distinguishing MSA from PD (CSF: AUC = 0.97, 95% CI 0.90–1.00; plasma: AUC = 0.90, 95% CI 0.81–1.00). Discussion In MSA, GFAP shows promise as novel biomarker for assessing current clinical disease severity, while NfL might serve as biomarker for prediction of disease progression and differential diagnosis of MSA against PD.
    Type of Medium: Online Resource
    ISSN: 0340-5354 , 1432-1459
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 1421299-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Investigative Radiology, Ovid Technologies (Wolters Kluwer Health), Vol. 59, No. 9 ( 2024-9), p. 667-676
    Abstract: Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. Therefore, this study investigates the association between PVS volume and AD progression in cognitively unimpaired (CU) individuals, both with and without subjective cognitive decline (SCD), and in those clinically diagnosed with mild cognitive impairment (MCI) or mild AD. Materials and Methods A convolutional neural network was trained using manually corrected, filter-based segmentations (n = 1000) to automatically segment the PVS in the centrum semiovale from interpolated, coronal T2-weighted magnetic resonance imaging scans (n = 894). These scans were sourced from the national German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study. Convolutional neural network–based segmentations and those performed by a human rater were compared in terms of segmentation volume, identified PVS clusters, as well as Dice score. The comparison revealed good segmentation quality (Pearson correlation coefficient r = 0.70 with P 〈 0.0001 for PVS volume, detection rate in cluster analysis = 84.3%, and Dice score = 59.0%). Subsequent multivariate linear regression analysis, adjusted for participants' age, was performed to correlate PVS volume with clinical diagnoses, disease progression, cerebrospinal fluid biomarkers, lifestyle factors, and cognitive function. Cognitive function was assessed using the Mini-Mental State Examination, the Comprehensive Neuropsychological Test Battery, and the Cognitive Subscale of the 13-Item Alzheimer’s Disease Assessment Scale. Results Multivariate analysis, adjusted for age, revealed that participants with AD and MCI, but not those with SCD, had significantly higher PVS volumes compared with CU participants without SCD ( P = 0.001 for each group). Furthermore, CU participants who developed incident MCI within 4.5 years after the baseline assessment showed significantly higher PVS volumes at baseline compared with those who did not progress to MCI ( P = 0.03). Cognitive function was negatively correlated with PVS volume across all participant groups ( P ≤ 0.005 for each). No significant correlation was found between PVS volume and any of the following parameters: cerebrospinal fluid biomarkers, sleep quality, body mass index, nicotine consumption, or alcohol abuse. Conclusions The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.
    Type of Medium: Online Resource
    ISSN: 1536-0210 , 0020-9996
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2024
    detail.hit.zdb_id: 2041543-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Alzheimer's & Dementia, Wiley
    Abstract: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS Cross‐sectional resting‐state functional magnetic resonance imaging connectivity (FC) and amyloid‐positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD‐plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC–amyloid associations across cohorts. DISCUSSION Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture‐specific features to enrich preclinical Alzheimer's disease in non‐Western populations. Highlights Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross‐cultural harmonization of SCD regarding Alzheimer's disease pathology is required.
    Type of Medium: Online Resource
    ISSN: 1552-5260 , 1552-5279
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2201940-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Alzheimer's Research & Therapy, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2023-01-12)
    Abstract: Neuroinflammation constitutes a pathological hallmark of Alzheimer’s disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. Methods Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer’s Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. Results Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. Conclusions Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein’s specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research.
    Type of Medium: Online Resource
    ISSN: 1758-9193
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2506521-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Brain, Oxford University Press (OUP), ( 2024-04-24)
    Abstract: Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer’s disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer’s type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 23 ( 2022-11-22), p. 14554-
    Abstract: Objective markers for the neurodegenerative disorder progressive supranuclear palsy (PSP) are needed to provide a timely diagnosis with greater certainty. Non-coding RNA (ncRNA), including microRNA, piwi-interacting RNA, and transfer RNA, are good candidate markers in other neurodegenerative diseases, but have not been investigated in PSP. Therefore, as proof of principle, we sought to identify whether they were dysregulated in matched serum and cerebrospinal fluid (CSF) samples of patients with PSP. Small RNA-seq was undertaken on serum and CSF samples from healthy controls (n = 20) and patients with PSP (n = 31) in two cohorts, with reverse transcription-quantitative PCR (RT-qPCR) to confirm their dysregulation. Using RT-qPCR, we found in serum significant down-regulation in hsa-miR-92a-3p, hsa-miR-626, hsa-piR-31068, and tRNA-ValCAC. In CSF, both hsa-let-7a-5p and hsa-piR-31068 showed significant up-regulation, consistent with their changes observed in the RNA-seq results. Interestingly, we saw no correlation in the expression of hsa-piR-31068 within our matched serum and CSF samples, suggesting there is no common dysregulatory mechanism between the two biofluids. While these changes were in a small cohort of samples, we have provided novel evidence that ncRNA in biofluids could be possible diagnostic biomarkers for PSP and further work will help to expand this potential.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Genome Medicine, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2023-07-20)
    Abstract: Alzheimer’s disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-β (Aβ) peptides. How Aβ aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aβ aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. Methods We quantified progressive Aβ aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. Results Experiments revealed faster accumulation of Aβ42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aβ42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aβ aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aβ42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aβ plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. Conclusions We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker.
    Type of Medium: Online Resource
    ISSN: 1756-994X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2484394-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature, Springer Science and Business Media LLC, Vol. 600, No. 7889 ( 2021-12-16), p. 472-477
    Abstract: The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19 1,2 , host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases 3–7 . They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature, Springer Science and Business Media LLC, Vol. 621, No. 7977 ( 2023-09-07), p. E7-E26
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages