Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Med Discoveries, Open Source Publications, Vol. 3, No. 2 ( 2024-02-20)
    Abstract: Objective: In a word, the published studies are about health services among different population groups. Moreover, most of these studies focused on the relationship between medical insurance and health services, without utilizing the latest data and large sample sizes. This study aims to evaluate health services and their associated factors among middle-aged and elderly people with chronic diseases in China.
    Type of Medium: Online Resource
    ISSN: 2993-1142
    Language: Unknown
    Publisher: Open Source Publications
    Publication Date: 2024
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 12 ( 2017), p. 120301-
    Abstract: The characterization of the quantum phase transition in a lowdimensional system has attracted a considerable amount of attention in quantum manybody systems. As one of the fundamental models in quantum magnetism, spin-1 models have richer phase diagrams and show more complex physical phenomena. In the spin-1 antiferromagnetic XXZ model, the Haldane phase and the Nel phase are the gapped topologic phases which cannot be characterized by the local order parameters. To characterize the nature in such phases, one has to calculate the non-local long range order parameters. Normally, the non-local order parameter in the topological phase is obtained from the extrapolation of finite-sized system in numerical study. However, it is difficult to extract the critical exponents with such an extrapolated non-local order parameter due to the numerical accuracy. In a recently developed tensor network representation, i.e., the infinite matrix product state (iMPS) algorithm, it was shown that the non-local order can be directly calculated from a very large lattice distance in an infinite-sized system rather than an extrapolated order parameter in a finite-sized system. Therefore, it is worthwhile using this convenient technique to study the non-local orders in the topological phases and characterize the quantum criticalities in the topological quantum phase transitions. In this paper, by utilizing the infinite matrix product state algorithm based on the tensor network representation and infinite time evolving block decimation method, the quantum entanglement, fidelity, and critical exponents of the topological phase transition are investigated in the one-dimensional infinite spin-1 bond-alternating XXZ Heisenberg model. It is found that there is always a local dimerization order existing in the whole parameter range when the bond-alternative strength parameter changes from 0 to 1. Also, due to the effect of the bond-alternating, there appears a quantum phase transition from the long-rang ordering topological Nel phase to the local ordering dimerization phase. The von Neumann entropy, fidelity per lattice site, and order parameters all give the same phase transition point at c = 0.638. To identify the type of quantum phase transition, the central charge c 0.5 is extracted from the ground state von Neumann entropy and the finite correlation length, which indicates that the phase transition belongs to the two-dimensional Ising universality class. Furthermore, it is found that the Nel order and the susceptibility of Nel order have power-law relations to |-c|. From the numerical fitting of the Nel order and its susceptibility, we obtain the characteristic critical exponents ' = 0.236 and ' = 0.838. It indicates that such critical exponents from our method characterize the nature of the quantum phase transition. Our critical exponents from the iMPS method can provide guidance for studying the properties of the phase transition in quantum spin systems.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 9 ( 2020), p. 090302-
    Abstract: 〈sec〉Quantum phase transitions are driven by quantum fluctuations due to the uncertainty principle in many-body physics. In quantum phase transitions, the ground-state changes dramatically. The quantum entanglement, specific heat, magnetization and other physical quantities diverge according to certain functions, and show specific scaling behaviors. In addition, there is a topological quantum phase transition beyond the conventional Landau-Ginzburg-Wilson paradigm, which is relevant to emergent phenomena in strongly correlated electron systems, with topological nonlocal order parameters as a salient feature. Thus, topological order is a new paradigm in the study of topological quantum phase transitions.〈/sec〉〈sec〉To investigate competition mechanism of the different quantum spin interactions, in this paper, the one-dimensional spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya (DM) interaction is considered. The DM interaction drives the quantum fluctuations resulting in a phase transition. By using the one-dimensional infinite matrix product state algorithm in tensor network representation, the quantum entanglement entropy and order parameters are calculated from the ground-state function. The numerical result shows that with the change of bond alternating strength, there is a quantum phase transition from the topological ordered Haldane phase to the local ordered dimer phase. Based on the von Neumann entropy and order parameter, the phase diagram of this model is obtained. There is a critical line that separates the Haldane and the dimer phase. The DM interaction inhibits the dimerization of the quantum spin system and finally breaks the fully dimerization. Due to the fact that the structurally symmetry of system is broken, the local dimer order exists in the whole parameter range when the bond-alternative strength parameter changes. The first derivative of the local dimer order behaves as a peak corresponding to the critical point. Furthermore, from the numerical scaling of the first derivative of dimer order and the non-local string order near the phase transition point, the characteristic critical exponents 〈i〉α〈/i〉 and 〈i〉β〈/i〉 are obtained, respectively. It shows that the characteristic critical exponent 〈i〉α〈/i〉 decreases, and 〈i〉β〈/i〉 increases gradually with the interaction strength of DM increasing. The resulting state i.e. the anti-symmetric anisotropic DM interaction produced by spin-orbit coupling, affects the critical properties of the system in the phase transition. This reveals that the competition mechanism of the quantum spin interaction, also provides some guidance for the future study of the critical behavior in topological quantum phase transition with the DM interaction.〈/sec〉
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2020
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages