In:
Cell Death Discovery, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2018-02-01)
Abstract:
Hydrogen Sulfide (H 2 S), recently identified as the third endogenously produced gaseous messenger, is a promising therapeutic prospect for multiple cardio-pathological states, including myocardial hypertrophy. The molecular niche of H 2 S in normal or diseased cardiac cells is, however, sparsely understood. Here, we show that β-adrenergic receptor (β-AR) overstimulation, known to produce hypertrophic effects in cardiomyocytes, rapidly decreased endogenous H 2 S levels. The preservation of intracellular H 2 S levels under these conditions strongly suppressed hypertrophic responses to adrenergic overstimulation, thus suggesting its intrinsic role in this process. Interestingly, unbiased global transcriptome sequencing analysis revealed an integrated metabolic circuitry, centrally linked by NADPH homeostasis, as the direct target of intracellular H 2 S augmentation. Within these gene networks, glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme (producing NADPH) in pentose phosphate pathway, emerged as the critical node regulating cellular effects of H 2 S. Utilizing both cellular and animal model systems, we show that H 2 S-induced elevated G6PD activity is critical for the suppression of cardiac hypertrophy in response to adrenergic overstimulation. We also describe experimental evidences suggesting multiple processes/pathways involved in regulation of G6PD activity, sustained over extended duration of time, in response to endogenous H 2 S augmentation. Our data, thus, revealed H 2 S as a critical endogenous regulator of cardiac metabolic circuitry, and also mechanistic basis for its anti-hypertrophic effects.
Type of Medium:
Online Resource
ISSN:
2058-7716
DOI:
10.1038/s41420-017-0010-9
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2018
detail.hit.zdb_id:
2842546-7
Bookmarklink