Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 994-994
    Abstract: Currently, monocytes are classified into at least two subsets. Classical monocytes, also known as inflammatory monocytes (a Ly6C+ subset in mice and a CD14+ CD16− subset in human), are involved in innate immune responses. On the other hand, patrolling monocytes (a Ly6C− subset in mice and a CD14− CD16+ subset in human) have been recently identified. Ly6C− monocytes are found attached on the luminal side of endothelium and scavenge microparticles. Developmentally, Ly6C+ and Ly6C− monocytes share common monocyte progenitors (cMoPs), or Ly6C− monocytes might be converted from Ly6C+ monocytes. Although involvement of Ly6C− monocytes in various kinds of diseases has been reported, molecular mechanisms which regulate the homeostasis of Ly6C− monocytes are largely unknown. CCAAT/Enhancer Binding Protein β (C/EBPβ) is a leucine zipper type transcription factor. We and others have previously shown that C/EBPβ is required for stress-induced granulopoiesis (Hirai et al. Nat Immunol, 2006, Satake et al. J Immunol, 2012, Hayashi et al. Leukemia 2013). However, its roles in steady state hematopoiesis remain relatively unknown. We have recently found that peripheral blood monocytes are significantly reduced in Cebpb−/− mice (Tamura et al. Biochem Biophys Res Commun, 2015). In addition, last year in this meeting, we have reported that Cebpb mRNA is highly upregulated during differentiation from myeloid progenitors or Ly6C+ monocytes to Ly6C− monocytes, and that Ly6C− monocytes are almost completely absent in Cebpb−/− mice due to enhanced cell death [Abstract #224]. Here, we further investigated the molecular mechanisms underlying C/EBPβ-dependent survival of Ly6C− monocytes. In this study, we focused on the regulation of Csf1r (also known as M-CSF receptor). Csf1r is an essential molecule for the development and survival of monocytes. To determine the developmental stages at which Csf1r plays critical roles, we measured the expressions of Csf1r mRNA in hematopoietic stem/progenitor cells and monocyte subsets obtained from wild-type (WT) mice. Csf1r mRNA was expressed at at low levels in hematopoietic stem/progenitors including macrophage dendritic precursors (MDPs) and cMoPs. Csf1r mRNA started to be upregulated in Ly6C+ monocytes, followed by a drastic increase in Ly6C− monocytes. These expression patterns were quite similar to those of Cebpb, suggesting the close relationship between Csf1r and C/EBPβ. Interestingly, such drastic increase of Csf1r mRNA in Ly6C− monocytes was blunted in Cebpb−/− mice, and protein levels of Csf1r in Cebpb−/− Ly6C− monocytes were significantly lower than those in WT Ly6C− monocytes. In order to evaluate the effect of C/EBPβ overexpression on Csf1r expression, EML cells, a mouse hematopoietic stem cell line, were engineered to express C/EBPβ-estrogen receptor (ER) fusion protein or ER alone. Nuclear translocation of C/EBPβ-ER in the presence of tamoxifen resulted in significantly increased levels of Csf1r mRNA and protein when compared to nuclear translocation of ER alone. Previous reports have demonstrated that a combination of a promoter sequence and an enhancer region located in the first intron of Csf1r gene (Fms intronic regulatory element: FIRE) is enough to recapitulate the endogenous Csf1r expression and that these elements contained consensus binding sites for C/EBP transcription factors. Then, we hypothesized that C/EBPβ binds to these sites, activates transcription of Csf1r gene and promotes survival of Ly6C- monocytes. To evaluate this hypothesis, we utilized an expression vector, in which green fluorescent protein (GFP) is driven by a combination of the Csf1r promoter and FIRE sequences (Csf1r-EGFP-FIRE) (a kind gift from Drs Clare P and David A Hume, University of Edinburgh). When a C/EBPβexpression vector was co-transfected with the vector containing Csf1r-EGFP-FIRE into HEK293 cells, the frequencies of GFP positive cells were significantly higher when compared to a control vector (C/EBPβ vs control; 4.6±0.6 vs 1.6±1.0, p=0.01), suggesting that C/EBPβ regulates Csf1r expression through these elements. We are currently evaluating the significance of C/EBP consensus binding sites in the promoter and the enhancer. ChIP PCR is also in progress to further verify our hypothesis. Collectively, these results suggest that Csf1r is a critical downstream target of C/EBPβ in Ly6C- monocytes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3580-3580
    Abstract: CCAAT Enhancer Binding Protein b (C/EBPb) is a leucine zipper type transcription factor. While C/EBPa plays a critical role in maintaining steady-state granulopoiesis, C/EBPb is required for stress-induced granulopoiesis (Hirai et al., 2006). We have been focusing on the functions of C/EBPb in the regulation of hematopoietic stem and progenitor cells (HSPCs) especially under stressed conditions. Last year in this meeting, we have shown that 1) C/EBPb was upregulated at protein level in HSPCs after hematopoietic stresses, 2) C/EBPb was required for initial expansion of HSPCs after transplantation, and 3) C/EBPb promoted exhaustion of HSPCs under repetitive hematopoietic stresses (56th ASH, abstract #67850). Here, we further investigated the significance of C/EBPb in cell cycle regulation of HSPCs and the distinct roles of C/EBPb isoforms in HSPCs during regenerative conditions. To clarify the involvement of C/EBPb in cell cycle regulation of HSPCs, we compared the cell cycle status of wild-type (WT) and Cebpb knockout (KO) HSPCs by intracellular Ki67 staining and short-term BrdU incorporation assay in combination with multi-color flow cytometric analysis. In order to exclude the difference in the bone marrow microenvironment, CD45.2+ WT or Cebpb KO bone marrow (BM) cells were transplanted into lethally irradiated CD45.1+ WT mice. At steady state (12 weeks after the BM transplantation), the cell cycle status of Cebpb KO HSPCs was identical to that of WT HSPCs. Then cell cycle status of HSPCs was assessed at various time points during regeneration after intraperitoneal administration of 5-fluorouracil (5-FU, 150mg/kg). We found that significantly more Cebpb KO HSPCs remained in the G0 phase than WT HSPCs (in LT-HSCs on days 3-10; in MPPs on days 6-12). Significantly less Cebpb KO HSPCs were BrdU+ and were in the S/G2/M phase on day 7. These findings suggest that C/EBPb, in a cell-intrinsic manner, facilitates cell cycle entry, progression and consequent earlier expansion of HSPCs in response to hematopoietic stresses. Next, we investigated the distinct roles of C/EBPb isoforms in regulation of HSPCs. C/EBPb is a unique single exon gene and utilization of three different initiating codons result in three distinct isoforms. Liver-enriched activating protein* (LAP*) and LAP are the longer isoforms containing transactivating domains, DNA binding and dimerization domains, and liver-enriched inhibitory protein (LIP) is the shortest isoform which lacks the transactivating domains. In order to examine the expression pattern of C/EBPb isoforms in vivo in scarce populations of regenerating HSPCs, we developed a novel flow cytometric method to distinguish the cells predominantly expressing shorter isoform (LIP) from the cells expressing both LIP and the longer isoforms (LAP* and LAP) by intracellular double staining. Using this method, we found that predominantly LIP-expressing cells transiently emerged within MPP fraction in the regenerating bone marrow (on days 5-6 after administration of 5-FU, Figure below), while overall C/EBPb expression levels were significantly upregulated in most cells. To examine the roles of respective C/EBPb isoforms in regulation of HSPCs, EML cells, a murine hematopoietic stem cell line, were retrovirally transduced with one of the C/EBPb isoforms and the transduced cells were subjected to further analysis (vectors are kind gifts from Dr Watanabe-Okouchi N and Dr Kurokawa M, Tokyo Univ). LIP-expressing EML cells were more proliferative and actively cycling than EML cells transduced with a control vector, whereas the proliferation of LAP*- or LAP-expressing cells were markedly suppressed. LIP-expressing cells remained undifferentiated status (c-kithigh CD11b-) for more than 2 weeks, while LAP*- or LAP-expressing cells rapidly differentiated into c-kitlow CD11b+ myeloid cells and eventually exhausted within a week. These results indicate LIP plays quite distinct roles from LAP* and LAP in regulation of HSPCs. Collectively, our data suggest that C/EBPb isoforms distinctively and collaboratively regulate HSPCs in regenerative conditions: early transient elevation of LIP contributes to cell cycle activation and rapid expansion of HSPC population, which is in turn converted into supply of mature myeloid cells by more abundant upregulation of LAP* and LAP. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 130, No. 16 ( 2017-10-19), p. 1809-1818
    Abstract: In Cebpb−/− mice, the number of Ly6C− monocytes was specifically decreased in a cell-intrinsic manner due to their accelerated death. C/EBPβ supports the survival of Ly6C− monocytes, at least in part through direct upregulation of Csf1r.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia Research, Elsevier BV, Vol. 124 ( 2023-01), p. 106983-
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2008028-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1120-1120
    Abstract: Even in the era of tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells still remains to be a prerequisite for the complete cure of the disease. Interferon-α (IFNα), which has been used long for the treatment for chronic phase (CP)-CML, are now being re-evaluated since recent clinical trials showed that IFNα significantly improved the clinical outcome of patients treated with imatinib. IFNα promotes progression of cell cycle and differentiation of normal hematopoietic stem/progenitor cells (HSPCs) (Essers MA et al, Nature 2009; Sato T et al, Nat Med2009). However, its effect and mechanism of action on CML stem cells have not been investigated yet. CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor playing an essential role for emergency granulopoiesis. Under stressed conditions including infections and cytokine stimulations, prompt and sufficient supply of granulocytes is evoked by C/EBPβ, which promotes both proliferation and myeloid differentiation of HSPCs (Hirai H et al, Nat Immunol 2006; Satake S et al, J Immunol2012). In addition, we have previously shown that (1) C/EBPβ is upregulated in HSPCs obtained from patients with CP-CML, (2) STAT5 is responsible for the upregulation, and (3) C/EBPβ promotes myeloid differentiation of CML stem cells (Hayashi Y et al, Leukemia2013). IFNα is one of the inflammatory cytokines, thus we hypothesized that C/EBPβ is involved in the effect of IFNα on CML stem cells, through promoting their differentiation and exhaustion. In this study, we investigated the molecular interplay between IFNα and C/EBPβ in CML stem cells. First, we searched for regulatory elements of Cebpb, which is responsible for C/EBPβ upregulation induced by BCR-ABL-STAT5 signaling. By ChIP-seq analysis of a HSC line, EML cells, we identified novel BCR-ABL-responsive STAT5 binding sites in 3' distal region of Cebpb. Interestingly, two STAT5 consensus motifs (TTCNNNGAA) are tandemly located in this region, which is highly conserved among various species including human. Enrichment of H3K27Ac histone mark within this region in BCR-ABL-expressing EML cells was more evident than in empty vector-transduced cells. These results suggest that this region is a critical enhancer required for BCR-ABL-dependent expression of C/EBPβ. Next, we explored whether IFNα induces C/EBPβ expression in EML cells and found that IFNα rapidly phosphorylated STAT5 as well as STAT1 and STAT3, and increased C/EBPβ expression irrespective of the presence of BCR-ABL. Notably, IFNα also recruited STAT5 to the 3' distal enhancer region of Cebpb mentioned above, suggesting that this enhancer might also regulate cytokine-responsive C/EBPβ expression. In order to clarify involvement of C/EBPβ in the action of IFNα, KSL cells from WT or C/EBPβ KO mouse bone marrow (BM) cells were retrovirally transduced with BCR-ABL, and subjected to serial replating assay. IFNα promoted differentiation of WT CML stem cells toward myeloid cells, and reduced their replating ability. In contrast, C/EBPβ-deficient CML stem cells retained their immature status and colony-forming ability even in the presence of IFNα. Finally, we evaluated the in vivo effect of IFNα on CML stem cells by serial BM transplantation experiments. The first recipients of BCR-ABL-transduced BM cells were administrated with PolyI:C, which induces IFNα production in vivo. The frequencies and numbers of WT CML stem cells in BM of the first recipients were significantly decreased by administration of PolyI:C, and this effect was severely abolished when C/EBPβ was absent in CML stem cells (Figure). Notably, PolyI:C treatment prolonged the survival of the secondary recipient mice only in the presence of C/EBPβ in CML stem cells, suggesting that IFNα promotes exhaustion of CML stem cells through C/EBPβ. Collectively, these data demonstrate that IFNα upregulates C/EBPβ at least in part through recruiting STAT5 to 3' distal enhancer and that C/EBPβ is the critical regulator of differentiation and exhaustion of CML stem cells induced by IFNα. Our basic study presented here will shed light on the molecular mechanisms involved in the clinical efficacy of IFNα on CML. Figure Figure. Disclosures Hirai: Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding. Maekawa:Bristol-Myers K.K.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 2368-2368
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2368-2368
    Abstract: ARG (ABL2) is a member of ABL family kinases and highly homologous to ABL (ABL1) except the C-terminal domain adjacent to the kinase domain. TEL/ARG that consists of ARG fused to TEL (ETV6) has been found in AML M3, M4 or T-ALL patients, with additional chromosomal abnormalities of t(15;17)(q12;q21), inv(16)(p13;q12) or t(1;10;12)(q25;q23;p13) translocation, respectively. The structure of TEL/ARG is similar to that of TEL/ABL, which has been found in patients with T-ALL, B-ALL, AML and CML. TEL mediates homo-oligomerization of these fusion proteins, TEL/ABL and TEL/ARG, resulting in constitutive activation of the tyrosine kinases. Although ABL fusion proteins such as BCR/ABL and TEL/ABL have been intensively investigated, the involvement of TEL/ARG in leukemogenesis is not fully elucidated yet. We have recently reported that in vitro transforming activity of TEL/ARG was significantly lower than that of TEL/ABL although their kinase activities were almost identical. Interestingly, the in vitro transforming activities of C-terminus-swapped mutants, TEL/ABL with C-terminal domain of ARG [TEL-ABL (ARG-C)] or TEL/ARG with C-terminal domain of ABL [TEL/ARG (ABL-C)] , were comparable to those of TEL/ARG or TEL/ABL, respectively, while kinase activities in the swapped mutants were not altered. These results suggest that C-termini of ABL family kinases contain some functional domain that defines their distinct transforming activities. The purpose of this study is to compare the in vivo leukemogenic activities of TEL/ABL and TEL/ARG, and evaluate the impact of the C-terminal domains. First, we investigated whether TEL/ABL or TEL/ARG caused leukemia in mice. Each fusion gene together with GFP gene was retrovirally transduced into the bone marrow cells harvested from C57BL/6 mice treated with 5-fluorouracil, and the transduced cells were transplanted into lethally irradiated mice. Similar to BCR/ABL, transplantation of TEL/ABL-transduced cells induced rapid myeloproliferative status accompanied by hepatomegaly and/or splenomegaly, and all the recipient mice died within 33 days after transplantation, indicating the development of myeloid leukemia. In contrast, the recipient mice transplanted with TEL/ARG-transduced cells did not develop myeloid leukemia but infiltrative mastocytosis, and died around 200 days after transplantation (Figure 1). Hemophagocytic mast cells accumulating in the bone marrow, and mast cells circulating in the peripheral blood were also observed in these mice. Next we investigated the roles of C-terminal domains of ABL and ARG in their in vivo leukemogenic activities. C-terminus-swapped mutants, TEL/ABL (ARG-C) and TEL/ARG (ABL-C) were retrovirally transduced into bone marrow cells and the transduced cells were transplanted as described above. Intriguingly, TEL/ABL (ARG-C) mutant failed to cause myeloproliferative status or leukemia at day 153 (Figure 2A). On the other hand, TEL/ARG (ABL-C) induced lethal myeloid leukemia in 4 out of 13 mice (30.8%) within 111 days after transplantation (Figure 2B). Collectively, the in vivo phenotypes induced by TEL/ABL (ARG-C) or TEL/ARG (ABL-C) resembled those induced by TEL/ARG or TEL/ABL, respectively. Mastocytosis, a characteristic of TEL-ARG-induced phenotype, has not been observed so far in any of the recipients of TEL/ABL (ARG-C) or TEL/ARG (ABL-C). In conclusion, these results indicate that C-terminal domain of ABL family kinases defines their distinct leukemogenic activities in vivo through modulating both proliferation and differentiation. Notably, C-terminus of ARG strongly suppressed the in vivo leukemogenic activity of TEL/ABL without impairing the tyrosine kinase activity. Further clarification of the molecular mechanisms underlying the suppressive activity of C-terminus of ARG will lead to development of a novel therapeutic strategy, especially for patients with CML harboring mutations, which are resistant to tyrosine kinase inhibitors. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Biochemical and Biophysical Research Communications Vol. 464, No. 2 ( 2015-08), p. 654-658
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 464, No. 2 ( 2015-08), p. 654-658
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Experimental Hematology, Elsevier BV, Vol. 43, No. 9 ( 2015-09), p. S104-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2005403-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2828-2828
    Abstract: ABL family kinases, ABL1 (ABL) and ABL2 (ARG), share functional domains such as SH2-, SH3- and kinase domains, and are highly homologous except their C-terminal domain. Fusions to TEL (ETV6), TEL-ABL and TEL-ARG, are constitutively-active kinases and have been reported in rare cases of human CML, AML or ALL. Although TEL-ABL is involved in leukemogenesis, the role of TEL-ARG has not been elucidated because this fusion protein has been always accompanied with other major translocations, such as PML-RARα. We have previously shown that although their kinase activities are comparable, TEL-ABL strongly transforms Ba/F3 cells, while TEL-ARG has a much lower transforming activity, and these differences are attributed to their distinct C-terminal domain (Okuda K and Hirai H, Open Journal of Blood Diseases 2013). At the last ASH annual meeting, we have shown that TEL-ABL induces myeloid leukemia in a short latency, whereas TEL-ARG induces lethal mastocytosis in a long latency in a mouse bone marrow (BM) transplantation model (Abstract number #2368, ASH 2014). Here we investigated the clonogenicity of mastocytosis and explored the detailed mechanism underlying the onset of mastocytosis induced by TEL-ARG. First, we performed a serial transplantation experiment to evaluate mastocytosis-initiating capacity of TEL-ARG-expressing cells. Hematopoietic stem/progenitor cells (HSPCs) from 5-FU-treated mice were retrovirally transduced with TEL-ARG and transplanted to the first recipient mice. BM cells from moribund mice due to mastocytosis were transplanted to the sublethally irradiated second recipients. On day 219 after transplantation, we detected mast cells circulating in the peripheral blood of these two recipients, and observed severe pancytopenia and body weight loss in one of them. In this mouse, mast cells engulfing blood cells were accumulated in the BM and spleen, and subcutaneous tissues were massively infiltrated by mast cells, all of which were characteristics of mastocytosis observed in the first recipients. These results indicate that TEL-ARG confers mastocytosis-initiating capacity on HSPCs. Next, we focused on the mechanisms why TEL-ARG induces mastocytosis, whereas TEL-ABL induces myeloid leukemia. HSPCs from 5-FU-treated mice were retrovirally transduced with TEL-ABL or TEL-ARG, and subjected to the in vitro mast cell differentiation assay in the presence of WEHI-conditioned medium, as a source of IL-3 (Figure). IL-3 enhanced differentiation and proliferation of empty-virus-transduced HSPCs toward mast cells in a dose-dependent manner. TEL-ARG induced mast cell differentiation in the absence of IL-3 to some extent, and IL-3 markedly increased mast cell number even at a lower concentration. TEL-ARG-expressing mast cells continue to proliferate for more than 4 months maintaining their phenotype as mast cells. In contrast, IL-3 did not enhance mast cell differentiation but support myeloid differentiation of TEL-ABL-expressing HSPCs. These data suggest that while TEL-ABL induces myeloid differentiation, TEL-ARG strongly promotes differentiation toward mast cells through sensitizing HSPCs to IL-3, an important factor for differentiation, survival and proliferation of mast cells. Furthermore, these results might account for differences in the phenotypes of diseases induced by TEL-ABL (myeloid leukemia) or TEL-ARG (mastocytosis). In conclusions, TEL-ABL strongly induces myeloid-skewed differentiation, whereas TEL-ARG promotes mast cell differentiation through increasing sensitivity to IL-3 and induces clonal mast cell disease. We are currently investigating the molecular mechanisms by which they activate distinct differentiation pathways toward myeloid cells or mast cells. We believe that further exploration of the underlying mechanisms will deepen our understanding of the molecular basis for ABL kinase-mediated leukemogenesis as well as mast cell disorders. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1325-1325
    Abstract: Monopoiesis is the process in which hematopoietic stem cells (HSCs) continuously give rise to monocytes. Accumulating evidence has identified cellular constituents of monopoiesis. Common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), macrophage-dendritic cell precursors (MDPs) and common monocyte progenitors (cMoPs) are the intermediates during the differentiation of HSCs into mature monocytes. In mice, CD11b+ CD115+ monocytes are further divided into two subsets based on the expression of Ly6C. Classical monocytes express Ly6C on their surface. By contrast, Ly6C− patrolling monocytes have been recently identified, and the molecular mechanisms which regulate the development and homeostasis of Ly6C−monocytes still remain elusive. C/EBPβ is a leucine zipper transcription factor which regulates stress-induced granulopoiesis (Hirai et al. Nat Immunol, 2006, Hayashi et al. Leukemia 2013). We have recently found that peripheral blood (PB) monocytes are significantly reduced in steady-state Cebpb−/− mice (Tamura et al. Biochem Biophys Res Commun, 2015). In addition, last year at this meeting, we have reported that cell death of Ly6C− monocytes was accelerated through reduced expression of Csf1r (encoding a receptor for M-CSF) in Cebpb−/− mice. Here in this study, we determined the precise developmental stage where C/EBPβ is mandatory for survival of Ly6C− monocytes, and investigated the mechanism of Csf1r regulation by C/EBPβ. A recent publication demonstrated that Mx1 is preferentially expressed by monocytes and a Mx1 promoter-mediated conditional system targets monocytes without inoculation of polyI:C (Hashimoto et al. Immunity, 2013), suggesting that Mx1-Cre Cebpbf/f mouse is ideal to evaluate the monocyte-specific requirement for C/EBPβ. We confirmed that upregulation of Cebpb mRNA during monopoiesis was significantly impaired after cMoP stage in Mx1-Cre+Cebpbf/f mice. In order to exclude the possible involvement of Cebpβ deficient microenvironment, bone marrow (BM) cells of Mx1-Cre+Cebpβf/f mice (CD45.2+) were transplanted into lethally irradiated CD45.1+ wild type mice. The frequencies of Ly6C− monocytes in the recipients of Mx1-Cre+Cebpbf/f BM cells were significantly reduced when compared to mice that received Mx1-Cre−Cebpbf/f BM cells (Figure). These results strongly suggest that C/EBPβ is specifically required after commitment to monocytes. In order to investigate the molecular mechanisms involved in the regulation of Csf1r by C/EBPβ, we utilized a combination of a promoter and an enhancer region located in the first intron of Csf1r gene (Fms intronic regulatory element: FIRE) for reporter assay (Pridans et al. Mol Ther Methods Clin Dev, 2014). These regulatory elements contain at least 2 consensus binding sites for C/EBPβ (one in the promoter and the other in the enhancer). C/EBPβ significantly enhanced the reporter activity of the regulatory elements in a dose-dependent manner, and introduction of mutations into either of the consensus binding sites abrogated the reporter activity. Next, we engineered EML cells, a mouse HSC line, to express C/EBPβ-estrogen receptor (ER) fusion protein or ER alone. Nuclear translocation of C/EBPβ-ER in the presence of tamoxifen resulted in significant increase of Csf1r mRNA and protein. Using these cells, we performed chromatin immunoprecipitation PCR. Upon treatment with tamoxifen, significant enrichment of C/EBPβ at the promoter region and the FIRE region was observed. These data indicated that C/EBPβ regulates Csf1r through direct binding to these regulatory elements. Collectively, these results demonstrate that C/EBPβ supports survival of Ly6C− monocytes after commitment to monocyte lineage through direct regulation of Csf1r, which is critical for survival and differentiation of monocytes. Figure Figure. Disclosures Hirai: Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding. Maekawa:Bristol-Myers K.K.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages