Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Canadian Journal of Forest Research, Canadian Science Publishing
    Abstract: Many coastal forests stretching from central California to southwest Oregon are threatened or have been impacted by the invasive forest pathogen Phytophthora ramorum, the cause of sudden oak death. We analyzed a set of stand-level forest treatments aimed at preventing or mitigating disease impacts on stand composition, biomass, and fuels using a before–after-control-intervention experiment with a re-evaluation after 5 years. We compared the effects of restorative management for invaded stands and preventative treatments for uninvaded forests with two stand-level experiments. The restorative treatments contrasted two approaches to mastication, hand-crew thinning, and thinning with pile burning with untreated controls replicated at three distinct sites ( N = 30), while the preventative treatments were limited to hand-crew thinning ( N = 10) conducted at a single site. Half of the restoration treatments had basal sprouts removed 2 and 4 years after treatment. All treatments significantly reduced stand density and increased average tree size without significantly decreasing total basal area, both immediately and 5 years after treatments. Preventative treatments did not reduce the basal area or density of timber species not susceptible to P. ramorum, suggesting the relative dominance of these species increased in accordance with host removal. Follow-up basal sprout removal in the restoration experiment appears to maintain treatment benefits for average tree size and may be associated with small decreases in stand density 5 years after initial treatment. Our study demonstrates that for at least 5 years, a range of common stand management practices can improve forest conditions threatened or impacted by sudden oak death.
    Type of Medium: Online Resource
    ISSN: 0045-5067 , 1208-6037
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1473096-0
    SSG: 23
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Annual Reviews ; 2019
    In:  Annual Review of Ecology, Evolution, and Systematics Vol. 50, No. 1 ( 2019-11-02), p. 381-403
    In: Annual Review of Ecology, Evolution, and Systematics, Annual Reviews, Vol. 50, No. 1 ( 2019-11-02), p. 381-403
    Abstract: Pathogens and insect pests are important drivers of tree mortality and forest dynamics, but global change has rapidly altered or intensified their impacts. Predictive understanding of changing disease and outbreak occurrence has been limited by two factors: ( a) tree mortality and morbidity are emergent phenomena determined by interactions between plant hosts, biotic agents (insects or pathogens), and the environment; and ( b) disparate global change drivers co-occur, obscuring net impacts on each of these components. To expand our understanding of changing forest diseases, declines, and outbreaks, we adopt a framework that identifies and organizes observed impacts of diverse global change drivers on the primary mechanisms underlying agent virulence and host susceptibility. We then discuss insights from ecological theory that may advance prediction of forest epidemics and outbreaks. This approach highlights key drivers of changing pest and pathogen dynamics, which may inform forest management aimed at mitigating accelerating rates of tree mortality globally.
    Type of Medium: Online Resource
    ISSN: 1543-592X , 1545-2069
    URL: Issue
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2019
    detail.hit.zdb_id: 2131893-1
    detail.hit.zdb_id: 2131661-2
    SSG: 12
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Ecology, Wiley, Vol. 109, No. 2 ( 2021-02), p. 676-691
    Abstract: Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease‐related perturbations via their effects on the occurrence of hosts, pathogens and microclimates; however, these interactions have rarely been examined. The disease ‘sudden oak death’ (SOD), associated with the introduced pathogen Phytophthora ramorum , causes acute, landscape‐scale tree mortality in California's fire‐prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long‐term datasets that describe wildfire occurrence and P. ramorum dynamics across the Big Sur region, we modelled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality. Past wildfire altered disease dynamics and reduced SOD‐related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently burned forests were less likely to be invaded by P. ramorum , had lower incidence of host infection, and exhibited decreased disease‐related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver of P. ramorum infestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect of P. ramorum infection on host mortality was reduced in recently burned areas, indicating that the loss of tall, mature host canopies may temporarily dampen pathogen transmission and ‘release’ susceptible species from significant inoculum pressure. Synthesis . Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease‐related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically important host populations. These results highlight that human‐altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreak emergence and driving biotic disturbance regimes.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Ecology, Wiley, Vol. 109, No. 5 ( 2021-05), p. 2247-2260
    Abstract: The enemy release hypothesis proposes that invasion by exotic plant species is driven by their release from natural enemies (i.e. herbivores and pathogens) in their introduced ranges. However, in many cases, natural enemies, which may be introduced or managed to regulate invasive species, may fail to impact target host populations. Landscape heterogeneity, which can affect both the population dynamics of the pathogen and the susceptibility and the density of hosts, may contribute to why pathogens fail to control hosts despite established negative disease impacts. We explored patterns of post‐fire infection of the fungal head‐smut pathogen Ustilago bullata on the invasive annual cheatgrass Bromus tectorum , which has caused the notorious grass‐fire cycle and ecosystem degradation across Western North America. We asked whether infection level was a driver of host density or vice‐versa, and how weather affected infection and how spatial patterns of infection varied with time since fire, using a combination of structural equation modelling (SEM), proportional odds modelling and entropy‐based local indicator of spatial association (ELSA) on data from 〉 700 plots spanning 〉 100,000 ha remeasured annually for 4 years. Observed infection levels increased with greater prior‐year cheatgrass cover, and disease severity did not suppress cheatgrass populations. Warm, humid fall/winters and proximity to fire refugia (unburned patches) were associated with more infections. Infection clustering was most evident 2–3 years following fire with warm‐wet fall–winter conditions and decreased after two drier, colder winters. Synthesis . Severity of fungal disease did not result in measurable reductions of populations of a non‐native, invasive host species, cheatgrass, which suggests that natural enemies may not strongly regulate cheatgrass in its introduced range. Landscape heterogeneity associated with disturbance and weather limited population‐level infection of hosts by the fungal pathogen. Disturbance (specifically wildfire) and variable weather are key components of this and similar invasion systems, and likely need to be considered when evaluating disease dynamics and potential for natural enemies to influence invasion potential.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecosphere, Wiley, Vol. 10, No. 12 ( 2019-12)
    Abstract: Human‐altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance‐prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter‐dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease‐fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD‐affected forests, we monitored seedling abundances and survival over eight years. With pre‐ and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our results indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter‐dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human‐altered regimes where asexual persistence may be predicted to be a beneficial life history strategy.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2572257-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Conservation Science and Practice, Wiley, Vol. 4, No. 7 ( 2022-07)
    Abstract: Interannual variation, especially weather, is an often‐cited reason for restoration “failures”; yet its importance is difficult to experimentally isolate across broad spatiotemporal extents, due to correlations between weather and site characteristics. We examined post‐fire treatments within sagebrush‐steppe ecosystems to ask: (1) Is weather following seeding efforts a primary reason why restoration outcomes depart from predictions? and (2) Does the management‐relevance of weather differ across space and with time since treatment? Our analysis quantified range‐wide patterns of sagebrush ( Artemisia spp.) recovery, by integrating long‐term records of restoration and annual vegetation cover estimates from satellite imagery following thousands of post‐fire seeding treatments from 1984 to 2005. Across the Great Basin, sagebrush growth increased in wetter, cooler springs; however, the importance of spring weather varied with sites' long‐term climates, suggesting differing ecophysiological limitations across sagebrush's range. Incorporation of spring weather, including from the “planting year,” improved predictions of sagebrush recovery, but these advances were small compared to contributions of time‐invariant site characteristics. Given extreme weather conditions threatening this ecosystem, explicit consideration of weather could improve the allocation of management resources, such as by identifying areas requiring repeated treatments; but improved forecasts of shifting mean conditions with climate change may more significantly aid the prediction of sagebrush recovery.
    Type of Medium: Online Resource
    ISSN: 2578-4854 , 2578-4854
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2947571-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology Letters, Wiley, Vol. 24, No. 11 ( 2021-11), p. 2477-2489
    Abstract: Understanding why diversity sometimes limits disease is essential for managing outbreaks; however, mechanisms underlying this ‘dilution effect’ remain poorly understood. Negative diversity‐disease relationships have previously been detected in plant communities impacted by an emerging forest disease, sudden oak death. We used this focal system to empirically evaluate whether these relationships were driven by dilution mechanisms that reduce transmission risk for individuals or from the fact that disease was averaged across the host community. We integrated laboratory competence measurements with plant community and symptom data from a large forest monitoring network. Richness increased disease risk for bay laurel trees, dismissing possible dilution mechanisms. Nonetheless, richness was negatively associated with community‐level disease prevalence because the disease was aggregated among hosts that vary in disease susceptibility. Aggregating observations (which is surprisingly common in other dilution effect studies) can lead to misinterpretations of dilution mechanisms and bias towards a negative diversity‐disease relationship.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Conservation Letters Vol. 12, No. 2 ( 2019-03)
    In: Conservation Letters, Wiley, Vol. 12, No. 2 ( 2019-03)
    Abstract: Translocation of species, populations, or genotypes beyond their historic ranges (i.e., assisted migration [AM]) is an oft‐debated climate adaptation strategy. Well‐intentioned AM actions could alter disease dynamics for target species and recipient sites, resulting in unanticipated detrimental economic and ecological impacts. Although disease risks are occasionally mentioned in AM debates, current regulations or best practices that reduce or mitigate these complex risks are generally lacking in North America. We use the “Disease Triangle”, a foundational framework in pathology, to illustrate pathways through which AM may impact disease emergence, to identify knowledge gaps, and to suggest best practices to reduce disease risks. We highlight empirical examples in which altering pathogen distributions, host communities, and environment have historically resulted in costly and ecologically damaging diseases in plants. Although guidelines to reduce disease risks in AM are generally lacking, policies governing endangered species, invasive species, and disease management can provide starting points for a more comprehensive policy. We use examples from the United States to identify key strengths and weaknesses that can inform regulations to reduce disease risks associated with AM. We argue that consideration of disease motivates policy development that incorporates improved risk assessments, agency coordination, and accountability mechanisms.
    Type of Medium: Online Resource
    ISSN: 1755-263X , 1755-263X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2430375-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Communications Vol. 13, No. 1 ( 2022-06-16)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-06-16)
    Abstract: Accurate predictions of ecological restoration outcomes are needed across the increasingly large landscapes requiring treatment following disturbances. However, observational studies often fail to account for nonrandom treatment application, which can result in invalid inference. Examining a spatiotemporally extensive management treatment involving post-fire seeding of declining sagebrush shrubs across semiarid areas of the western USA over two decades, we quantify drivers and consequences of selection biases in restoration using remotely sensed data. From following more than 1,500 wildfires, we find treatments were disproportionately applied in more stressful, degraded ecological conditions. Failure to incorporate unmeasured drivers of treatment allocation led to the conclusion that costly, widespread seedings were unsuccessful; however, after considering sources of bias, restoration positively affected sagebrush recovery. Treatment effects varied with climate, indicating prioritization criteria for interventions. Our findings revise the perspective that post-fire sagebrush seedings have been broadly unsuccessful and demonstrate how selection biases can pose substantive inferential hazards in observational studies of restoration efficacy and the development of restoration theory.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages