Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  Drug Discovery Today Vol. 18, No. 17-18 ( 2013-09), p. 894-905
    In: Drug Discovery Today, Elsevier BV, Vol. 18, No. 17-18 ( 2013-09), p. 894-905
    Type of Medium: Online Resource
    ISSN: 1359-6446
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1500337-1
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Immunology Vol. 11 ( 2020-2-11)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 11 ( 2020-2-11)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 13 ( 2014-09-25), p. 2072-2080
    Abstract: The synthetic retinoid ST1926 induces apoptosis of ATL cells and prolongs survival of ATL mice. At the molecular level, ST1926 causes early DNA damage, upregulates p53, and downregulates Tax expression.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 11 ( 2022-11-02), p. 2626-2645
    Abstract: Tumor-infiltrating B and plasma cells (TIB) are prevalent in lung adenocarcinoma (LUAD); however, they are poorly characterized. We performed paired single-cell RNA and B-cell receptor (BCR) sequencing of 16 early-stage LUADs and 47 matching multiregion normal tissues. By integrative analysis of ∼50,000 TIBs, we define 12 TIB subsets in the LUAD and adjacent normal ecosystems and demonstrate extensive remodeling of TIBs in LUADs. Memory B cells and plasma cells (PC) were highly enriched in tumor tissues with more differentiated states and increased frequencies of somatic hypermutation. Smokers exhibited markedly elevated PCs and PCs with distinct differentiation trajectories. BCR clonotype diversity increased but clonality decreased in LUADs, smokers, and with increasing pathologic stage. TIBs were mostly localized within CXCL13+ lymphoid aggregates, and immune cell sources of CXCL13 production evolved with LUAD progression and included elevated fractions of CD4 regulatory T cells. This study provides a spatial landscape of TIBs in early-stage LUAD. Significance: While TIBs are highly enriched in LUADs, they are poorly characterized. This study provides a much-needed understanding of the transcriptional, clonotypic states and phenotypes of TIBs, unraveling their potential roles in the immunopathology of early-stage LUADs and constituting a road map for the development of TIB-targeted immunotherapies for the treatment of this morbid malignancy. This article is highlighted in the In This Issue feature, p. 2483
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AME Publishing Company ; 2019
    In:  Journal of Thoracic Disease Vol. 11, No. S3 ( 2019-3), p. S216-S216
    In: Journal of Thoracic Disease, AME Publishing Company, Vol. 11, No. S3 ( 2019-3), p. S216-S216
    Type of Medium: Online Resource
    ISSN: 2072-1439 , 2077-6624
    Language: Unknown
    Publisher: AME Publishing Company
    Publication Date: 2019
    detail.hit.zdb_id: 2573571-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 130-130
    Abstract: Lung adenocarcinoma (LUAD) is the most commonly diagnosed histological subtype of lung cancer. While earlier work has underscored genomic and immune alterations in LUAD, the roles of individual cell populations in early-stage human LUAD evolution in space remain unknown. Here, we provide a detailed cellular atlas of early-stage LUAD and its spatial ecosystem along the peripheral lung. We performed single-cell RNA sequencing of 186,916 cells including enriched epithelial fractions from five early-stage LUADs with fourteen multi-region normal lung tissues of defined spatial proximities from the primary LUADs. We show that major epithelial and immune cellular lineages, states, and transcriptomic features geospatially and progressively evolve across normal regions and with increasing LUAD proximity. Analysis of 70,030 lung epithelial cells unraveled diverse lineage trajectories, transcriptional lineage plasticity programs underlying KRAS-mutant cells, and intratumoral heterogeneity within single sites. T regulatory cell programs including multiple immune checkpoints increased in tissues with closer proximity to LUADs, in sharp contrast to signatures of CD8+ cytotoxic T cells, antigen presentation by macrophages, and inflammatory dendritic cells. We found that some spatial signatures (e.g. a B cell signature score) were increased along the pathologic spectrum of normal lung, preneoplastic lesions, and matched invasive LUADs. LUAD cell-cell communication networks were enriched with ligand-receptor interactions involving CD24, LGALS9 and TIM3 immune checkpoints, including crosstalk between CD24 antigen in LUAD epithelial cells and SIGLEC10 in myeloid subsets. CD24 was markedly increased in preneoplasias relative to normal lung and further in LUAD, and its expression was highly positively correlated with immunosuppressive phenotypes. These data provide an atlas of cellular states and phenotypes underlying early-stage LUAD evolution in space, and a scalable resource for identification of targets for early treatment. Citation Format: Ansam Sinjab, Guangchun Han, Warapen Treekitkarnmongkol, Kieko Hara, Patrick Brennan, Minghao Dang, Dapeng Hao, Ruiping Wang, Enyu Dai, Hitoshi Dejima, Jiexin Zhang, Elena Bogatenkova, Beatriz Sanchez-Espiridion, Kyle Chang, Danielle R. Little, Samer Bazzi, Linh Tran, Kostyantyn Krysan, Carmen Behrens, Dzifa Duose, Edwin R. Parra, Maria Gabriela Raso, Luisa M. Solis, Junya Fukuoka, Jianjun Zhang, Boris Sepesi, Tina Cascone, Lauren A. Byers, Don L. Gibbons, Jichao Chen, Seyed Javad Moghaddam, Edwin J. Ostrin, Daniel G. Rosen, John V. Heymach, Paul Scheet, Steven Dubinett, Ignacio I. Wistuba, Junya Fujimoto, Christopher S. Stevenson, Avrum E. Spira, Linghua Wang, Humam Kadara. Resolving the spatial and cellular architecture of lung adenocarcinoma by multi-region single-cell sequencing [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 130.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 10_Supplement ( 2022-05-15), p. PR006-PR006
    Abstract: Lung adenocarcinomas (LUADs) represent the most common lung cancer subtype and frequently harbor somatic mutations in the KRAS oncogene (KM-LUADs). While enhanced screening has improved early diagnosis of KM-LUAD, patient prognosis remains moderate to poor. Decoding the earliest events driving KM-LUADs can inform of ideal targets for its interception. Previous work showed that tobacco carcinogen (NNK) exposure leads to a pervasive field of injury comprised of molecular (e.g., KRAS mutations) and inflammatory changes that are shared between LUADs and their adjacent normal-appearing ecosystem. We and others have also shown that early immune and inflammatory alterations are implicated in the progression of normal lung (NL) epithelia and premalignant lesions (PMLs) to KM-LUAD. Yet, we still do not know the identities of specific epithelial subsets or how they promote a field of injury and inspire KM-LUAD pathogenesis. Here, we performed single-cell RNA-sequencing (scRNA-seq) of lungs from a human-relevant mouse model that develops PMLs and somatic KM-LUADs following NNK exposure. Analysis of 203,991 cells including 19,513 epithelial subsets after NNK cessation and at the onset of KM-LUADs revealed a unique population of alveolar cells that closely associated with tumor inception. These cells were highly evident in NNK- but not in control saline-exposed animals. Trajectory analysis showed that tumor clones developed through these transitionary cells, henceforth referred to as alveolar intermediate cells (AICs). Notably, AICs persisted for months after NNK cessation and acquired the same driver Kras mutations found in the resultant LUADs, thus supporting a role for AICs as KM-LUAD progenitors. Intriguingly, AICs harbored elevated expression of key components of p53 signaling (Trp53, Cdkn2a) and pro-inflammatory responses (IL-1β receptor Il1r1, NF-κB), and augmented cell-cell communication with Il1b+ macrophages which were enriched in LUAD-bearing lungs. Indeed, targeting IL-1β attenuated KM-LUAD development and increased anti-tumor immunity. In parallel, murine AIC expression profiles were significantly enriched in transcriptomes of human PMLs and LUADs. We thus probed our in-house and expanding scRNA-seq cohort of enriched (by sorting) epithelial subsets from human LUADs and NL, including 191,491 alveolar cells. AICs were not only evident in human lung tissues, but their fractions were also significantly increased in LUADs relative to NL. In conclusion, we identified a unique alveolar cell state that typified KM-LUAD progenitors, associated with inflammatory cues, and progressed along the pathologic continuum of damaged epithelium to KM-LUADs. Ongoing studies are evaluating whether AICs, in concert with tumor-initiating inflammation, trigger a field of injury that may underlie early phenotypic initiation and development of KM-LUAD. Citation Format: Ansam Sinjab, Guangchun Han, Warapen Treekitkarnmongkol, Dapeng Hao, Enyu Dai, Luisa M Solis, Seyed Javad Moghaddam, Junya Fujimoto, Jichao Chen, Matthew Edwards, Christopher S. Stevenson, Avrum E. Spira, Linghua Wang, Humam Kadara. An emerging role for inflammation-associated alveolar intermediate cells in early phenotypic development of KRAS-mutant lung adenocarcinoma [abstract]. In: Proceedings of the AACR Special Conference on the Evolutionary Dynamics in Carcinogenesis and Response to Therapy; 2022 Mar 14-17. Philadelphia (PA): AACR; Cancer Res 2022;82(10 Suppl):Abstract nr PR006.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 223-223
    Abstract: Effects of waterpipe smoking on lung pathobiology and carcinogenesis remain sparse despite the worldwide emergence of this tobacco vector as a socially acceptable form of smoking, particularly among the youth. To address this gap, we investigated the effects of chronic waterpipe smoke (WPS) exposure on lung pathobiology, host immunity, and tumorigenesis using both an experimental animal model and an exploratory observational analysis of human waterpipe smokers and non-smokers. Mice exposed to increasing doses of WPS (once or five times per week for 20 weeks), through an exclusively devised exposure system for this study, were more prone to develop lung tumors compared to control-air exposed littermates. This effect was accompanied by various pro-tumor immune phenotypes, including increased IL-17A+ levels in T/B cells as well as elevated expression of the immune checkpoint PD-L1 and the pro-inflammatory cytokine IL-1β in myeloid cells. While flow cytometry analysis revealed increased CD4 and CD8 T cell infiltration in WPS-exposed mice, gene signatures of cytotoxic and expanded immune response were, conversely, decreased in animals exposed to heavy WPS relative to control air. Interestingly, mice heavily exposed to WPS exhibited increased expression of Tmprss4, Cd55, and Ace2, cell receptors and mediators of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and, thus, COVID-19 pathogenesis. We also perform RNA-sequencing analysis of bronchial airway epithelial brushings of cancer-free waterpipe smokers and non-smokers undergoing diagnostic bronchoscopy. Transcriptomes of normal airway cells in waterpipe smokers, relative to waterpipe non-smokers, harbored gene programs that were associated with poor clinical outcomes in lung adenocarcinoma (LUAD) patients, alluding to a WPS-associated molecular injury, like that established in response to cigarette smoking. Overall, our analyses demonstrate immunomodulatory and carcinogenic effects of WPS on the murine and human lung. Our study also shows that WPS exposure leads to a field of injury that may be associated with increased risk for lung cancer. This study is unique for interrogating carcinogenic effects of chronic exposure to WPS with the longest, to our knowledge, follow-up time in vivo. Our findings accentuate the need for additional studies that can guide evidence-based policies to counteract shortfalls in public health control of waterpipe smoking. Citation Format: Zahraa Rahal, Maya Hassane, Nareg Karaoghlanian, Jiexin Zhang, Ansam Sinjab, J. Jack Lee, Maria Gabriela Raso, Junya Fujimoto, Hassan Chami, Alan Shihadeh, Humam Kadara. Chronic exposure to waterpipe smoke elicits immunomodulatory and carcinogenic effects in the lung [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 223.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2126-2126
    Abstract: Decoding the complex molecular and cellular processes during lung adenocarcinoma (LUAD) development is needed to devise early intervention strategies. To comprehensively capture LUAD neoplastic heterogeneity and cellular plasticity, we performed single-cell RNA-sequencing (scRNA-seq) of 257,481 enriched epithelial cells (EPCAM+ sorting) from 16 early-stage LUADs, each with 3 matched normal lung (NL) samples at defined spatial proximities to the tumor (n=47). 29,076 LUAD-derived cells clustered by patient and harbored distinct gene expression features (e.g., oxidative stress response), signifying interpatient LUAD heterogeneity. We also identified, using whole exome sequencing (WES) of matching lung and germline control samples, recurrent oncogenic driver alterations (e.g., EGFR, TP53, KRAS). Transcriptomic features of malignant cells were shared between LUADs (e.g., loss of lineage-specific gene expression) or private such as those associated with driver mutation status (e.g., KRAS). Indeed, clusters of malignant cells were overall segregated based on driver mutations (e.g., KRAS, EGFR). Malignant cells from KRAS-mutant LUADs (KM-LUADs) had increased activation of NF-kB, estrogen and hypoxia signaling, comprising a unique gene module (GM) that correlated with a less differentiated state. We also found hallmark pathways (cholesterol metabolism, DNA replication, cell fate decision) specific to EGFR-mutant LUADs (EM-LUADs). Notably, cells from one EM-LUAD and its 3 multiregion NL tissues clustered closely and had activated pro-tumor lymphoid signatures (CD4 naïve, Treg). Mutation burden increased with tumor proximity and intriguingly, EGFR exon20 mutation was evident in the tumor (VAF = 0.29) and its most proximal NL (VAF = 0.05), signifying a mutational field effect. Copy number variations (CNVs) derived from WES of all samples were overall consistent with those inferred from scRNA-seq data. Relative to EM-LUADs, malignant cells from KM-LUADs displayed lower CNV burdens. Interpatient CNV heterogeneity was prominent even among LUADs harboring the same oncogenic drivers. Notably, intratumor heterogeneity (ITH) was high among epithelial cells within single regions from the same LUAD. Among LUADs, malignant cell clades with KRAS mutations and lower CNV scores displayed less differentiated states. To investigate biological pathways driving ITH, we derived 6 GMs with tumor-relevant functional features, including a transcription/translation regulation GM that consistently correlated with reduced differentiation. Our analysis of a large number of lung epithelial cells from LUAD patients reveals in-depth insights into LUAD taxonomy which can help identify epithelial heterotypes, unravel the continuum of early differentiation events and expand our understanding of early LUAD pathogenesis. Citation Format: Guangchun Han, Ansam Sinjab, Warapen Treekitkarnmongkol, Dapeng Hao, Enyu Dai, Luisa M. Solis, Edwin R. Parra, Stephen Swisher, Tina Cascone, Boris Sepesi, Jichao Chen, Steven Dubinett, Junya Fujimoto, Ignacio I. Wistuba, Christopher S. Stevenson, Avrum E. Spira, Linghua Wang, Humam Kadara. Single-cell sequencing of early-stage lung adenocarcinomas reveals prominent intratumoral heterogeneity and epithelial plasticity programs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2126.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 3349-3349
    Abstract: Relative to other tumors in smokers, KRAS-mutant lung adenocarcinomas (LUADs) display dismal prognosis warranting the need for early management of this disease. Limiting these advances is our gap in knowledge of events that drive KRAS-mutant LUAD oncogenesis. Host defense systems, such as those elicited by the gut microbiome, were recently shown to influence tumors external to the gastrointestinal tract (e.g. melanomas), thus highlighting the microbiome as an orchestrator of oncogenesis. Yet, gut microbiome changes in early stages of KRAS-mutant LUAD development are not known. We recently reported that mice with knockout of G-protein coupled receptor 5A (Gprc5a-/-), in contrast to wild type (WT) littermates, develop LUADs which are accelerated following exposure to tobacco carcinogen (nicotine-specific nitrosamine ketone/NNK). LUADs in the tobacco exposed Gprc5a-/- mouse model exhibit high somatic mutation burdens, driver Kras variants and other co-occurring drivers, features constituting a “perfect storm” for LUAD pathogenesis in smokers. Using this human-relevant model, we performed 16S-Seq of fecal samples collected prior to and at several time points post-NNK exposure during LUAD development. We found significant, some progressive, microbial changes during the pathogenesis of LUAD, including abolishment of phylum Verrucomicrobia, progressive increase in tumor-promoting genera Odoribacter spp., gradual decrease in Akkermansia spp., which was previously shown to be associated with response to PD-1 blockade, as well as reduced abundance of Ruminococcus which was previously reported to be suppressed during colon carcinogenesis. Additionally, and prior to tumor onset, lungs and immune cells of these Gprc5a-/- mice exhibited markedly elevated expression of lipocalin 2 (LCN2), an antimicrobial protein released from host cells during microbiome imbalance and inflammation. We further found that Gprc5a-/- mice with knockout of Lcn2 exhibited increased tumors compared to similarly exposed Gprc5a-/- with intact Lcn2. These effects were accompanied by widespread changes in the gut microbiome including increased abundance of tumor-promoting Alistipes spp. and, conversely, reduced abundance of Lactobacillus spp. Our data show that host defense mediated by LCN2 counteracts Kras-mutant LUAD development by restricting gut microbiome imbalance (i.e., maintaining gut microbiome homeostasis and diversity), suggesting a protective role during Kras-mutant LUAD development. Our overall findings inform on novel pathways implicating antimicrobial host defense mechanisms in the development of smoking-associated Kras-mutant LUAD. Efforts are underway to discern specific microbiome profiles that are likely causally related to smoking-associated Kras-mutant LUAD development as well as to develop and test preclinical microbiome intervention strategies for this malignancy. Citation Format: Warapen Treekitkarnmongkol, Casey Finnicum, Ansam Sinjab, Maya Hassane, Christel Davis, Gareth E. Davies, Kristi L. Hoffman, Junya Fujimoto, Florencia McAllister, Boris Sepesi, Tina Cascone, Robert R. Jenq, Joseph Petrosino, Erik Ehli, Seyed J. Moghaddam, Humam Kadara. Evolution of the gut microbiome during the pathogenesis of smoking-associated Kras-mutant lung cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3349.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages