In:
Frontiers in Education, Frontiers Media SA, Vol. 7 ( 2022-5-23)
Abstract:
Learning analytics represent a promising approach for fostering personalized learning processes. Most applications of this technology currently do not use textual data for providing information on learning, or for deriving recommendations for further development. This paper presents the results of three studies aiming to make textual information usable. In the first study, the iota concept is introduced as a new content analysis measure to evaluate inter-coder reliability. The main advantage of this new concept is that it provides a reliability estimation for every single category, allowing deeper insight into the quality of textual analysis. The second study simulates the process of content analysis, comparing the new iota concept with well-established measures (e.g., Krippendorff’s Alpha, percentage agreement). The results show that the new concept covers the true reliability of a coding scheme, and is not affected by the number of coders or categories, the sample size, or the distribution of data. Furthermore, cut-off values are derived for judging the quality of the analysis. The third study employs the new concept, as it analyzes the performance of different artificial intelligence (AI) approaches for interpreting textual data based on 90 different constructs. The texts used here were either created by apprentices, students, and pupils, or were taken from vocational textbooks. The paper shows that AI can reliably interpret textual information for learning purposes, and also provides recommendations for optimal AI configuration.
Type of Medium:
Online Resource
ISSN:
2504-284X
DOI:
10.3389/feduc.2022.818365
DOI:
10.3389/feduc.2022.818365.s001
DOI:
10.3389/feduc.2022.818365.s002
DOI:
10.3389/feduc.2022.818365.s003
Language:
Unknown
Publisher:
Frontiers Media SA
Publication Date:
2022
detail.hit.zdb_id:
2882397-7
Bookmarklink