Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1996
    In:  Current Genetics Vol. 30, No. 4 ( 1996-9-26), p. 284-293
    In: Current Genetics, Springer Science and Business Media LLC, Vol. 30, No. 4 ( 1996-9-26), p. 284-293
    Type of Medium: Online Resource
    ISSN: 0172-8083 , 1432-0983
    RVK:
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1996
    detail.hit.zdb_id: 1458984-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1997
    In:  Science Vol. 278, No. 5340 ( 1997-11-07), p. 1064-1068
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 278, No. 5340 ( 1997-11-07), p. 1064-1068
    Abstract: The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1997
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Hematopathology, Springer Science and Business Media LLC, Vol. 12, No. 3 ( 2019-9), p. 121-133
    Type of Medium: Online Resource
    ISSN: 1868-9256 , 1865-5785
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2438687-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3547-3547
    Abstract: Abstract 3547 Introduction: Recurrent somatic mutations are valuable prognostic markers in cytogenetically normal Acute Myeloid Leukemia (AML). The most common of these mutations is a 9 to ∼150 bp internal tandem duplication (ITD) in the fms-related tyrosine kinase 3 (FLT3) gene, which is typically identified via PCR amplification and capillary electrophoresis. Since testing for individual mutations in this manner will become laborious and expensive as the number of clinically relevant mutations increases, we and others have proposed using targeted next-generation sequencing (NGS) for comprehensive detection of somatic mutations in multiple genes simultaneously. Successful application of this approach will require automated analysis methods capable of sensitive detection of a variety of mutation types, including single-base substitutions and insertions/deletions, with a low false-positive rate. However, the accuracy of current methods for identifying medium-sized insertions such as the FLT3 ITDs has not been established. Therefore, we sought to determine the ability of several common analysis tools to identify FLT3 ITDs from Illumina NGS sequence data. Methods: We performed targeted sequencing of 10 samples with known FLT3 ITDs ranging between 17 and 93 base-pairs (bp) as part of a larger test panel of 28 genes commonly mutated in AML and other malignancies. Nine of the FLT3 ITD-positive samples were from patients with newly diagnosed AML and were confirmed by PCR and capillary electrophoresis. A cancer cell line known to be heterozygous for a 30 bp FLT3 ITD, MV4-11, was also included. Indexed Illumina sequencing libraries were generated using automated library preparation and enriched for target regions using solution-phase hybridization-capture with biotinylated cRNA probes targeting exons +/− 200 bp plus 1 kb flanking the FLT3 gene and the 27 other genes in the panel. Enriched libraries were sequenced in multiplex on an Illumina HiSeq instrument using 2 × 101 bp reads. Demultiplexed reads were mapped to the hg19 reference sequence with novoalign, and indels were called in a 1 kilobase-pair region surrounding the FLT3 ITD with samtools, GATK, maq, CLC Genomics Workbench, PINDEL, and DINDEL using default parameters, in addition to de novo assembly of reads with partial similarity to the region using phrap. Insertion calls were then compared to results from PCR and capillary electrophoresis. Results: Multiplex sequencing resulted in 585 to 1,000-fold raw coverage of the FLT3 gene for the 10 study samples (Table 1). No FLT3 ITD insertions were detected in any sample using the common NGS analysis tools samtools, GATK, maq, DINDEL, and CLC Genomics Workbench. However, PINDEL identified insertions between 17 and 72 bp in 9 of 10 FLT3 ITD-positive samples. PINDEL failed to detect a 93 bp ITD insertion (the largest insertion in this set) in one patient sample, as well as an 84 bp insertion in a patient with two insertions (81 and 54 bp) detected by standard methods. De novo assembly of the FLT3 ITD region also resulted in detection of insertions in 9 of the 10 cases. No insertions were called in an additional set of 15 samples without known FLT3 ITDs. Conclusions: We evaluated the ability of several NGS analysis tools to detect previously known FLT3 ITDs in multi-gene targeted NGS data. Most of the general-purpose analysis tools we tested were unable to detect FLT3 ITD insertions. However, two approaches detected known FLT3 ITD insertions in 90% of the samples tested in this study, including the program PINDEL and de-novo assembly of the FLT3 ITD region using phrap. These results demonstrate that medium-sized FLT3 ITD insertions can be detected in clinical samples by high coverage NGS sequencing with the appropriate analysis pipeline. However, further methods for reliable detection of larger ( 〉 70bp) insertions must be developed before clinical NGS-based methods can be applied to the detection of the full spectrum of somatic mutations present in leukemias and other malignancies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2146-2146
    Abstract: Abstract 2146 Background: Naturally-occurring, thymus-derived regulatory T cells (nTregs) have clinically important roles in suppression of autoimmunity and graft versus host disease but are maladaptive in the tumor microenvironment where their activity results in the suppression of anti-tumor immunity. Induced regulatory T cells (iTregs) arise in the periphery under the influence of TGF-beta and have related phenotypic features and function. However, the mechanisms by which nTregs and iTregs impart suppression remain poorly understood. We have previously shown that NADPH oxidase derived reactive oxygen species (ROS) are important for nTreg suppressive function. We extend these observations and find distinct differences in the effect of antioxidants and NADPH oxidase inhibitors on blocking nTreg function but not iTreg function thus implying a role for ROS in the function of the former but not the latter. The contrasting requirement for ROS is further supported by distinct differences in expression of oxidant related genes in nTregs and iTregs. Methods: Murine nTregs were isolated by flow cytometric sorting for CD4+CD25++ T cells. Murine iTregs were induced from spleen sorted naïve T cells (CD4+CD44-) by incubating with TGF-beta and IL-2 and the resulting cells were sorted for the CD25++ subset. For suppression assays, nTregs and iTregs were incubated for three days with CFSE-labeled conventional T cells (Tc; CD4+CD25−) with antioxidants or NADPH oxidase inhibitors, as indicated. The proliferation of Tc co-incubated with Tregs was compared to their proliferation in identical conditions lacking Tregs in classical suppression assays. In some cases, nTregs and iTregs were co-incubated with CFSE-labeled Tc for two days in conditions identical to suppression assays to activate their suppressive function then resorted and subjected to RNA extraction and analysis of mRNA expression of a series of oxidant related genes. Results and Discussion: The antioxidants n-acetylcysteine (NAC; 1mM) and beta-mercaptoethanol (B-ME; 50 uM) had only small effects on suppression imparted by iTregs (p 〈 0.01) while they completely blocked suppression by nTregs (see figure; p 〈 0.0001). NADPH oxidase inhibitors VAS2870 (100nM) and diphenyleneiodonium (DPI; 10nM) demonstrated only mild effects on suppression by iTregs (p 〈 0.01) while markedly reducing suppression by nTregs (p 〈 0.001; see figure). iTregs derived from mice lacking a functional NADPH oxidase complex due to a mutation in the NADPH oxidase subunit NCF1 (NCF1−/−) demonstrated suppressive activity that was similar to wild type (NCF+/+) iTregs, thus genetically confirming no role for NADPH oxidase derived ROS for iTreg-mediated suppression. To evaluate dynamic functional differences between nTregs and iTregs, the expression of a series of ROS related genes was analyzed in purified Tregs with activated suppressive function. This demonstrated overexpression of two genes involved in oxidant detoxification in nTregs: sulfiredoxin1 (SRXN1; 〉 16 fold overexpression in nTregs vs iTregs; mean of 3 experiments) and glutathione peroxidase 3 (GPX3; approximately 3-fold overexpression in nTregs vs iTregs; mean of 3 experiments). Overexpression of SRXN1 and GPX3 in nTregs was confirmed with additional unrelated assays. SRXN1 is a transcriptional target for the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). Therefore, we separately evaluated NRF2 expression and found approximately 2.5-fold mean overexpression in nTregs vs iTregs. Thus, because ROS is an important mediator of nTreg suppressive function we hypothesize that activation of NRF2, and downstream antioxidants such as SRXN1, are critical for the oxidant protection of nTregs themselves during suppression. Conclusions: Our findings illustrate fundamental differences in suppressive mechanisms employed by murine nTregs and iTregs and highlight a role for ROS in the former but not the latter. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 114, No. 8 ( 2009-08-20), p. 1585-1595
    Abstract: Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)–driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: British Journal of Haematology, Wiley, Vol. 173, No. 1 ( 2016-04), p. 49-58
    Abstract: Currently, comprehensive genetic testing of myeloid malignancies requires multiple testing strategies with high costs. Somatic mutations can be detected by next generation sequencing ( NGS ) but copy number variants ( CNV s) require cytogenetic methods including karyotyping, fluorescence in situ hybidization and microarray. Here, we evaluated a new method for CNV detection using read depth data derived from a targeted NGS mutation panel. In a cohort of 270 samples, we detected pathogenic mutations in 208 samples and targeted CNV s in 68 cases. The most frequent CNV s were 7q deletion including LUC 7L2 and EZH 2 , TP 53 deletion, ETV 6 deletion, gain of RAD 21 on 8q, and 5q deletion, including NSD 1 and NPM 1 . We were also able to detect exon‐level duplications, including so‐called KMT 2A ( MLL ) partial tandem duplication, in 9 cases. In the 63 cases that were negative for mutations, targeted CNV s were observed in 4 cases. Targeted CNV detection by NGS had very high concordance with single nucleotide polymorphism microarray, the current gold standard. We found that ETV 6 deletion was strongly associated with TP 53 alterations and 7q deletion was associated with mutations in TP 53 , KRAS and IDH 1 . This proof‐of‐concept study demonstrates the feasibility of using the same NGS data to simultaneously detect both somatic mutations and targeted CNV s.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1475751-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Archives of Pathology and Laboratory Medicine ; 2015
    In:  Archives of Pathology & Laboratory Medicine Vol. 139, No. 5 ( 2015-05-01), p. 594-601
    In: Archives of Pathology & Laboratory Medicine, Archives of Pathology and Laboratory Medicine, Vol. 139, No. 5 ( 2015-05-01), p. 594-601
    Abstract: Recent studies using massively parallel sequencing technologies, so-called next-generation sequencing, have uncovered numerous recurrent, single-gene variants or mutations across the spectrum of myeloid malignancies. Objectives To review the recent advances in the understanding of the molecular basis of myeloid neoplasms, including their significance for diagnostic and prognostic purposes and the possible implications for the development of novel therapeutic strategies. Data Sources Literature review. Conclusions The recurrent mutations found in myeloid malignancies fall into distinct functional categories. These include (1) cell signaling factors, (2) transcription factors, (3) regulators of the cell cycle, (4) regulators of DNA methylation, (5) regulators of histone modification, (6) RNA-splicing factors, and (7) components of the cohesin complex. As the clinical significance of these mutations and mutation combinations is established, testing for their presence is likely to become a routine part of the diagnostic workup. This review will attempt to establish a framework for understanding these mutations in the context of myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia.
    Type of Medium: Online Resource
    ISSN: 1543-2165 , 0003-9985
    RVK:
    RVK:
    Language: English
    Publisher: Archives of Pathology and Laboratory Medicine
    Publication Date: 2015
    detail.hit.zdb_id: 2028916-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2008
    In:  The Journal of Molecular Diagnostics Vol. 10, No. 3 ( 2008-5), p. 236-241
    In: The Journal of Molecular Diagnostics, Elsevier BV, Vol. 10, No. 3 ( 2008-5), p. 236-241
    Type of Medium: Online Resource
    ISSN: 1525-1578
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 2032654-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2010
    In:  The Journal of Molecular Diagnostics Vol. 12, No. 2 ( 2010-03), p. 244-249
    In: The Journal of Molecular Diagnostics, Elsevier BV, Vol. 12, No. 2 ( 2010-03), p. 244-249
    Type of Medium: Online Resource
    ISSN: 1525-1578
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 2032654-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages