Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 5239-5239
    Abstract: Quinacrine is a bioactive acridine derivative which has been used for treatment of malaria, giardiasis, systemic lupus erythematosus, and rheumatoid arthritis. In searching for p53 pathway activating agents for cancer therapy, we found that quinacrine stabilizes p53 and induces p53-dependent and p53-independent tumor cell death. Quinacrine also induces expression of TRAIL Death Receptor 5 (DR5) and reduces expression of anti-apoptotic Mcl-1 in tumor cells. These activities predict synergies with TRAIL (tumor necrosis factor-related apoptosis inducing ligand) and chemotherapeutic agents in inducing extrinsic and intrinsic pathway mediated apoptosis. In addition, quinacrine suppresses NFkB activity in tumor cells. Clinical trials have been ongoing for treatment of solid tumors including colon cancer, renal cancer, prostate cancer, and non-small cell lung cancer with quinacrine in combination with chemotherapy or tyrosine-kinase inhibitors, however, the therapeutic potential of quinacrine in blood cancer cells has not been established. We tested quinacrine on hematopoietic malignant cells, which included cell lines of myeloid leukemia, lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, and multiple myeloma. We found that quinacrine induces massive cell death in the cell lines tested, at concentrations from as less as 1 microM to 5 microM, 2-10 times lower than required to induce solid tumor cell death. Quinacrine synergizes with TRAIL in inducing cell death of TRAIL-sensitive cells and reverses resistance in TRAIL-resistant cells. Quinacrine also synergizes with chemotherapeutic agents, such as antimetabolites, alkylating agents, and tyrosine kinase inhibitors, in inducing apoptosis of hematopoietic cancer cell lines. Our work supports translational efforts to advance the use of quinacrine from bench to clinic and provides rationale for combination chemotherapeutic regimes for treatment of hematopoietic malignancies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2015
    In:  Expert Opinion on Therapeutic Targets Vol. 19, No. 9 ( 2015-09-02), p. 1171-1185
    In: Expert Opinion on Therapeutic Targets, Informa UK Limited, Vol. 19, No. 9 ( 2015-09-02), p. 1171-1185
    Type of Medium: Online Resource
    ISSN: 1472-8222 , 1744-7631
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2028202-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Digital Health Vol. 5 ( 2023-10-10)
    In: Frontiers in Digital Health, Frontiers Media SA, Vol. 5 ( 2023-10-10)
    Abstract: Belantamab mafodotin (belamaf) has demonstrated clinically meaningful antimyeloma activity in patients with heavily pretreated multiple myeloma. However, it is highly active against dividing cells, contributing to off-target adverse events, particularly ocular toxicity. Changes in best corrected visual acuity (BCVA) and corneal examination findings are routinely monitored to determine Keratopathy Visual Acuity (KVA) grade to inform belamaf dose modification. Objective We aimed to develop a semiautomated mobile app to facilitate the grading of ocular events in clinical trials involving belamaf. Methods The paper process was semiautomated by creating a library of finite-state automaton (FSA) models to represent all permutations of KVA grade changes from baseline BCVA readings. The transition states in the FSA models operated independently of eye measurement units (e.g., Snellen, logMAR, decimal) and provided a uniform approach to determining KVA grade changes. Together with the FSA, the complex decision tree for determining the grade change based on corneal examination findings was converted into logical statements for accurate and efficient overall KVA grade computation. First, a web-based user interface, conforming to clinical practice settings, was developed to simplify the input of key KVA grading criteria. Subsequently, a mobile app was developed that included additional guided steps to assist in clinical decision-making. Results The app underwent a robust Good Clinical Practice validation process. Outcomes were reviewed by key stakeholders, our belamaf medical lead, and the systems integration team. The time to compute a patient's overall KVA grade using the Belamaf Eye Exam (BEE) app was reduced from a 20- to 30-min process to & lt;1–2 min. The BEE app was well received, with most investigators surveyed selecting “satisfied” or “highly satisfied” for its accuracy and time efficiency. Conclusions Our semiautomated approach provides for an accurate, simplified method of assessment of patients’ corneal status that reduces errors and quickly delivers information critical for potential belamaf dose modifications. The app is currently available on the Apple iOS and Android platforms for use by investigators of the DREAMM clinical trials, and its use could easily be extended to the clinic to support healthcare providers who need to make informed belamaf treatment decisions.
    Type of Medium: Online Resource
    ISSN: 2673-253X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 3017798-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 5491-5491
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 5491-5491
    Abstract: Outcome for Non-Hodgkin lymphoma (NHL) patients using conventional treatment standards remains unsatisfactory, particularly in advanced stage/ relapsed disease creating an imminent need for investigating novel treatment strategies. ONC201/TIC10 is a small molecule (Allen et al, 2014) that induces p53-independent cell death in tumor cells (sparing normal cells) through inactivation of prosurvival kinases Akt and ERK. ONC201 is scheduled to enter Phase I/II clinical trials as a monoagent for advanced cancers in adults in 2014. We have previously shown that ONC201 induces significant cytotoxicity in preclinical models of human lymphomas (Talekar et al, ASPHO 2014). Here, we show that ONC201 is not only effective as a monoagent across several NHL cell lines, but that it also synergizes with several chemotherapeutic agents to cooperatively induce cell death in vitro. We found that ONC201 induces significant apoptosis in a diverse panel of seven human NHL cell lines at low micromolar concentrations (1.3 to 5.06 uM). Increased surface TRAIL and surface DR5 expression was noted in a dose-dependent manner across representative cell lines. The increase in surface TRAIL correlated with increase in subG1 DNA content, which suggests TRAIL as a potential biomarker of ONC201 response. ONC201-induced apoptosis was inhibited using a pan-caspase inhibitor and was blocked by an anti-TRAIL antibody RIK-2. Western blot analysis of ONC201-treated representative cell lines suggests ERK inhibition and Foxo3a activation as a potential mechanism of cytotoxicity via TRAIL induction. In agreement with this notion, we observed upregulation of PARP & DR5 and caspase-3 activation in response to ONC201 treatment. We further found that ONC201 synergizes to potentiate cytotoxicity with several chemotherapeutic agents approved for NHL treatment, particularly anthracyclines (doxorubicin), nitrogen mustard (bendamustine), antimetabolite (cytarabine) and proteasome inhibitor (bortezomib) via CellTiter-Glo cell viability experiments that were corroborated by apoptosis assays. Together these results suggest that ONC201 is a potent antitumor agent in NHL as monoagent and in combination with approved therapies. The ultimate goal of this project is to provide a preclinical rationale for a phase Ib/II trial of ONC201 as a combination therapy in pediatric lymphoma. Disclosures Allen: Oncoceutics, Inc.: Employment, Equity Ownership, Ownership interests (including stock options) in a start-up company, the stock of which is not publicly traded Other, Patents & Royalties. El-Deiry:Oncoceutics, Inc.: Equity Ownership, Founder and Shareholder in Oncoceutics, Inc. The potential conflict of interest has been disclosed to and is being managed by his academic employer. Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2759-2759
    Abstract: ONC201 is the founding member of the imipridone class of anti-cancer small molecules that possess a unique core chemical structure. ONC201 is currently being evaluated in several Phase I/II clinical trials for advanced cancers. In the current study, we evaluated the single agent and combinatorial efficacy of ONC201 in preclinical models of acute leukemia and multiple myeloma (MM). In acute leukemia, we evaluated ONC201 anti-cancer effects in acute myeloid leukemia (AML) (Kasumi-1, HL60) and acute lymphoblastic leukemia (ALL) (Reh, Jurkat and MOLT-4) cell lines. We observed a time- and dose-dependent decrease in cell viability for every cell line in the panel (EC50 1-5 µM). Vincristine-resistant cells HL60/VCR were also sensitive to single agent ONC201 with EC50 values on par with corresponding vincristine-sensitive parental cells. Dose- and time-dependent induction of apoptosis was noted in Western blot analysis of caspase-3 cleavage in AML cell lines treated with 2.5 µM or 5 µM of ONC201 for 48 hr. Western Blot analysis further demonstrated inhibition of Akt and Foxo3a phosphorylation in Kasumi-1 cells, in line with the previously reported late-stage signaling effects of ONC201 in solid tumor cells (Allen et al, 2013). Sub-G1 analysis indicated that ONC201 induces apoptosis in ALL cells and a pan-caspase inhibitor reduced ONC201-mediated apoptosis. Western blot analysis revealed ONC201-mediated apoptosis involves PARP cleavage and caspase-9 activation in ALL cells. Anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xl were downregulated while the pro-apoptotic Bcl-2 family member Bim is upregulated in response to ONC201 treatment in ALL cells. ONC201 also downregulates the inhibitor of apoptosis (IAP) family proteins cIAP1 and cIAP2 in ALL cells. We observed inhibition of Akt phosphorylation upon ONC201 treatment of ALL cells. Fresh AML patient cells were also found to be sensitive to ONC201 in cell viability and caspase 3/7 activity assays at 5µM. We observed that independent clones of cancer cells with acquired resistance to ONC201 were more sensitive to cytarabine compared to parental ONC201-sensitive cancer cells. In addition, ONC201 demonstrated synergistic reduction in cell viability in combination with cytarabine in AML cell lines. Determination of combination indices (CI) revealed synergy at several concentrations (CI 0.336-0.75 in CMK cells). Also, ONC201 combined additively with midostaurin in CMK cells and vincristine in HL60/VCR cells. Thus, ONC201 is a promising combinatorial partner for AML therapies based on these preclinical sensitization results. In accordance with ONC201-mediated activation of the integrated stress response that B cells are highly sensitive to (Kline et al and Ishizawa et al, 2016), MM was identified as one of the most ONC201-sensitive tumor types in the Genomics of Drug Sensitivity in Cancer collection of cell lines. Three human MM cell lines were used for validation (KMS18, MM.1S and RPMI-8226), which revealed a time- and dose-dependent decrease in cell viability (EC50 1-2.5 µM). Bortezomib-resistant cells MM.1S 33X were sensitive to ONC201 as a single agent with EC50 values comparable to bortezomib-sensitive parental cells. We observed an average of 10-fold induction of ONC201-mediated apoptosis using Sub-G1 analyses in MM cells at 5 µM, 48 hrs post-treatment. Rescue of ONC201-mediated apoptosis was demonstrated using the pan-caspase inhibitor (Z-VAD-FMK). In addition, Western blot analysis in MM cells indicated a dose-dependent decrease in the anti-apoptotic protein XIAP which is a key mediator of apoptosis inhibition and is reported to be highly up-regulated in MM cells. Furthermore, ONC201 demonstrated synergistic reduction in cell viability at various concentrations in combination with either ixazomib or dexamethasone, which are used in the clinical treatment of MM, in RPMI8226 cells (CI 0.228-0.75). Also, ONC201 combined additively with bortezomib in RPMI8226 and MM.1S 33X cells. In summary, these preclinical studies support the ongoing ONC201 single agent trials in acute leukemias and MM. Our findings suggest that ONC201 may be an important therapeutic option for patients with hematological malignancies who have developed resistance to approved therapies. Additionally, our results point to specific standard-of-care therapies that may be combined with ONC201 to exert durable responses without adding to the burden of toxicity. Disclosures Prabhu: Oncoceutics: Employment. Tarapore:Oncoceutics: Employment, Equity Ownership. Oster:Oncoceutics: Employment, Equity Ownership. Allen:Oncoceutics: Employment, Equity Ownership. El-Deiry:Oncoceutics: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 45 ( 2016-11-08), p. 74380-74392
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2015
    In:  Cell Cycle Vol. 14, No. 15 ( 2015-08-03), p. 2422-2428
    In: Cell Cycle, Informa UK Limited, Vol. 14, No. 15 ( 2015-08-03), p. 2422-2428
    Type of Medium: Online Resource
    ISSN: 1538-4101 , 1551-4005
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2102687-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 5237-5237
    Abstract: ONC201/TIC10 is a potent small molecule anti-tumor agent in several types of solid tumors and lymphomas. ONC201/TIC10 is on track to enter clinical trials for patients with advanced cancer in 2014, with IND issued by the FDA in March, 2014. Early trials will evaluate the safety and efficacy of ONC201/TIC10 as a monoagent in hematological malignancies. In the current study, we evaluated the anti-cancer effects of the small molecule in Acute Lymphoblastic Leukemia (ALL). Analysis of cell viability by the CellTiter-Glo method revealed that ONC201/TIC10 treatment reduces the viability of three ALL cell lines (Reh, Jurkat, MOLT-4) in a dose- (2.5/5/10 μM) and time-dependent manner (24/48/72 h). We have previously reported that ONC201/TIC10-mediated reduction in cell viability and apoptosis in various types of solid tumors occurs at 60/72 h. Interestingly, ONC201/TIC10 reduces the viability of ALL cell lines within 24/48 h at the indicated doses. An inactive TIC10 isomer compound synthesized by Medkoo Biosciences with a structure related to the active ONC201/TIC10 compound does not reduce the viability of ALL cells. Sub-G1 analysis indicated that ONC201/TIC10 induces apoptosis in ALL cells and a pan-caspase inhibitor reduces ONC201/TIC10-mediated apoptosis. Western blot analysis was used to further investigate the mechanism of ONC201/TIC10-mediated apoptosis. ONC201/TIC10-mediated apoptosis involves PARP cleavage and caspase-9 activation. Anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xl are downregulated while the pro-apoptotic Bcl-2 family member Bim is upregulated in response to ONC201/TIC10 treatment. ONC201/TIC10 also downregulates the inhibitor of apoptosis (IAP) family proteins cIAP1 and cIAP2. We have previously shown that the anti-tumor effect of ONC201/TIC10 involves inhibition Akt and ERK phosphorylation resulting in Foxo3a activation and TRAIL-gene transcription. We observed inhibition of Akt phosphorylation upon ONC201/TIC10 treatment of ALL cells. Thus, ONC201/TIC10 holds promise as a novel agent for the treatment of ALL based on its robust activity in preclinical models of the disease. Our ongoing studies are evaluating the impact of this novel therapy on ALL cells with different translocations, and are introducing combination therapy with ONC201/TIC10 for ALL. Figure 1 Figure 1. Disclosures Allen: Oncoceutics: Employment, Equity Ownership, Patents & Royalties. El-Deiry:Oncoceutics, Inc.: Equity Ownership, Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 217-217
    Abstract: Background Targeted immunotherapy with CTL019, CD19-specific chimeric antigen receptor (CAR)-modified T cells, can produce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). However, a subset of patients has limited persistence, which can increase the risk of relapse. Most CAR single chain variable fragment (scFv) domains, including that of CTL019, are of murine origin; therefore, anti-mouse reactivity is one potential cause of immune-mediated rejection that may be overcome by fully human or humanized CAR designs. We developed a humanized anti-CD19 scFv domain and now report on treatment with humanized CD19-directed CAR T cells (CTL119). Design A pilot/phase 1 study of CAR-modified T cells containing a humanized anti-CD19 scFv domain (CTL119) enrolled children and young adults with relapsed/refractory B-ALL with or without prior exposure to a CAR T cell product. Patients previously treated with CD19-specific CAR-modified T cells were eligible if they met 1 of 3 criteria: 1) CD19+ relapse 2) no response to prior CAR T cell therapy or 3) early B cell recovery indicating poor persistence of CAR T cells. Patient-derived T cells were transduced ex vivo with a lentiviral vector encoding a CAR composed of CD3z, 4-1BB, and humanized anti-CD19 scFv domains and activated/expanded with anti-CD3/CD28 beads. The humanized scFv domain was developed by grafting the complementary determining regions of both the heavy and light chains onto human germline acceptor frameworks. Patients received lymphodepletion with cyclophosphamide and fludarabine 1 week prior to infusion with CTL119. Results Thirty children and young adults aged 29 mo-24 yr were infused with CTL119. Eighteen patients had received prior allogeneic stem cell transplant (SCT). Eleven patients who previously received murine-derived CD19-specific CAR-modified T cells (CTL019, n=7; other, n=4) were retreated for B cell recovery (n=5), CD19+ relapse (n=5), or no response to prior CAR T cells (n=1). CNS disease or other extramedullary disease was the indication for enrollment in 6 and 3 patients, respectively. At assessment 1 month after infusion, 26/30 patients (87%) achieved a complete response (CR), defined as morphologic remission with B cell aplasia. Of 11 patients previously treated with murine CD19-specific CAR-modified T cells, 7 (64%) achieved a CR at 1 month, 4 demonstrated no response. Multiparameter flow cytometry for minimal residual disease (MRD) was negative at a detection level of 0.01% in 5/7 responding patients. Two responding patients with positive MRD progressed to CD19+ relapse at 1.6 and 3 mo. In patients with no prior exposure to a CD19 CAR T cell product, MRD-negative CR was achieved in 19/19 patients (100%). One patient relapsed with CD19+ extramedullary disease at 2.8 mo. With a median follow-up of 4.2 mo (range, 1.0-14.1 mo) for all responding patients in both cohorts, 23/26 remain in remission with 1 proceeding to SCT in remission. B cell aplasia, a functional marker of CD19-targeted CAR T cell persistence, continued for 3 months or more in 11/18 patients with adequate follow-up: 1/6 retreatment, 10/12 CAR-naïve. Cytokine release syndrome (CRS) was observed in 28/30 patients and mild in most patients (grade 1, n=6; grade 2, n=18). Three patients experienced grade 3 CRS requiring supplemental oxygen or low-dose vasopressor support and 1 experienced grade 4 CRS requiring high-dose vasopressor and ventilatory support. Severe CRS was successfully managed with the IL6R antagonist tocilizumab in 3 patients. Neurologic toxicity included encephalopathy (n=5) and seizure (n=4) and was fully reversible. Conclusion In the first study of humanized anti-CD19 CAR T cells, CTL119 induced remissions in children and young adults with relapsed/refractory B-ALL, including 64% of patients previously treated with murine CD19-directed CAR T cells and 100% of CAR-naïve patients. Further investigation into CAR T cell persistence and anti-CAR responses will be vital to improve durable remission rates in this highly refractory population. Disclosures Maude: Novartis: Consultancy. Barrett:Novartis: Research Funding. Teachey:Novartis: Research Funding. Shaw:Novartis: Research Funding; Vitality Institute: Research Funding. Brogdon:Novartis: Employment. Scholler:Novartis: Patents & Royalties: Royalties, Research Funding. Marcucci:Novartis: Research Funding. Levine:GE Healthcare Bio-Sciences: Consultancy; Novartis: Patents & Royalties, Research Funding. Frey:Amgen: Consultancy; Novartis: Research Funding. Porter:Novartis: Patents & Royalties, Research Funding; Genentech: Employment. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. June:Novartis: Honoraria, Patents & Royalties, Research Funding; Celldex: Consultancy, Equity Ownership; Pfizer: Honoraria; Immune Design: Consultancy, Equity Ownership; Johnson & Johnson: Honoraria; Novartis: Honoraria, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership. Grupp:Pfizer: Consultancy; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 8_Supplement ( 2013-04-15), p. LB-307-LB-307
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. LB-307-LB-307
    Abstract: Despite significant progress in 5-year survival rates for Non-Hodgkin's Lymphoma (NHL) using conventional treatment standards, there is still a need for improved therapies especially for children and adolescents with advanced-stage disease and for those who relapse after conventional therapy. TRAIL (TNF-related apoptosis-inducing ligand) is an endogenous protein that induces apoptosis selectively in cancer cells by binding to death receptors DR4 or DR5. Our laboratory identified a small molecule, TIC10, that induces TRAIL gene transcription and TRAIL-dependent cell death and overcomes the most critical efficacy-limiting drug properties of available TRAIL-based therapies. Selective advantages of TIC10 include longer half-life, stimulation of TRAIL and death receptor expression, stability, lower production cost, and ability to cross the intact blood-brain barrier. Our lab has reported that TIC10 is orally active and has potent anti-tumor effects in several preclinical models, including prolonging survival of lymphoma-bearing Eu-myc transgenic mice. We hypothesize that TIC10 induces apoptosis in human lymphoma cell lines. We selected a diverse sub-type panel of lymphoma cell lines [BJAB, Daudi, Ramos and Raji (Burkitt's lymphoma); Karpas299 (T-cell NHL), and UPN2 (Mantle Cell lymphoma)] to assess lymphoma sensitivity to TIC10. Cell viability assays demonstrated sharp dose-response curves in all of the above cell lines at 72 hours post-treatment. Quantitative analysis of these relationships yielded TIC10 IC50 values in the range of 1.3 to 2.9 uM, which is comparable to the reported activity of TIC10 in other tumor types. Using low micromolar dose ranges, Daudi and Ramos cell lines were treated with TIC10 and sub-G1 analysis by flow cytometry revealed that TIC10 induced significant levels of apoptosis of both the treated cell lines at 72 hours post-treatment in a dose-dependent manner [Daudi cells: untreated cells: 9.4%; increase in sub-G1 content to 39% (4.3 fold); Ramos cells: untreated cells: 41.4%; increase in sub-G1 content to 72.1% (1.74 fold)] . These preliminary findings suggest that TIC10 induces apoptosis in human lymphoma cell lines at low micromolar concentrations. Our lab has previously established that TIC10 synergizes with several approved antitumor agents such as taxanes and sorafenib in other tumor types. We further hypothesize that TIC10 will have synergistic cytotoxic effects in lymphoma in combination with standard chemotherapeutic agents used to treat lymphoma. We have established monoagent dose-response relationships for gemcitabine, etoposide, doxorubicin and vincristine in the above mentioned lymphoma panel of cell lines. In conclusion, TIC10 is a first-in-class therapy that has apoptotic activity in human lymphoma cells that is promising as a monoagent and may be enhanced by combination with approved therapies to improve the standard of care in this setting. Citation Format: Mala K. Talekar, Joshua E. Allen, Wafik S. El-Deiry. TRAIL-inducing agent -TIC10 and combinatorial therapeutics in pediatric lymphoma: a targeted approach. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr LB-307. doi:10.1158/1538-7445.AM2013-LB-307
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages