Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2014
    In:  Applied Physics Letters Vol. 104, No. 10 ( 2014-03-10)
    In: Applied Physics Letters, AIP Publishing, Vol. 104, No. 10 ( 2014-03-10)
    Abstract: A chip-based ingroove microplasma source was designed for molecular emission spectrometry by using a space-confined direct current duct in air. The voltage-current characteristics of different size generators, emission spectroscopy of argon were discussed, respectively. It is found that the emission intensity of excited Ar and N2 approaches its maximum near the cathode, while OH and O peaks most likely appear close to the anode. The electron density, electronic excitation temperature, rotational temperature, and vibrational temperature of the argon plasma were also calculated. More importantly, the chip-based ingroove microplasma shows much better stability compared with its counterparts.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6164-6164
    Abstract: Immune checkpoint blockade (ICB) has demonstrated clinical success in “inflamed” tumors with significant T-cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell-intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrate that inactivation of the Polycomb-repressive complex 2 (PRC2) core components, EED or SUZ12, a prevalent genetic event in malignant peripheral nerve sheath tumor (MPNST) and sporadically in other cancer types, drives a context-dependent immune-desert TME. PRC2 inactivation reprograms the chromatin landscape that leads to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., interferon γ) to PRC2-regulated development and cellular differentiation transcriptional programs. Further, PRC2 inactivation reprograms the TME, leads to diminished tumor immune infiltrates and immune evasion through reduced chemokine production and impaired antigen presentation and T-cell priming, and confers ICB primary resistance through blunted T-cell recruitment in vivo. We demonstrate that strategies that enhancing innate immunity via intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) leads to increased tumor immune infiltrates and sensitizes PRC2-loss tumors to ICB. Our results provide novel molecular mechanisms of context-dependent dysfunctional epigenetic reprogramming that underline the immune-desert phenotype in MPNST and other cancers with PRC2 inactivation. Importantly, our findings highlight genetic-inactivation of PRC2 as a novel context-dependent ICB therapeutic resistance biomarker in cancer, and caution that therapeutic strategies that non-selectively target PRC2 in the host may lead to undesirable context-dependent immune evasion and ICB resistance in tumors. Our studies also point to intratumoral delivery of immunogenic therapeutic viruses as an initial strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB. Citation Format: Juan Yan, Yuedan Chen, Amish J. Patel, Cindy J. Lee, Sarah Warda, Briana G. Nixon, Elissa W. P. Wong, Miguel A. Miranda-Román, Ning Yang, Yi Wang, Jessica Sher, Emily Giff, Fanying Tang, Ekta Khurana, Sam Singer, Yang Liu, Phillip M. Galbo, Jesper L. Maag, Richard P. Koche, Deyou Zheng, Cristina R. Antonescu, Ming Li, Liang Deng, Yu Chen, Ping Chi. Tumor-intrinsic PRC2 inactivation drives a context-dependent immune-desert tumor microenvironment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6164.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 376, No. 6596 ( 2022-05-27)
    Abstract: Untreated prostate cancers rely on androgen receptor (AR) signaling for growth and survival, forming the basis for the initial efficacy of androgen deprivation therapy (ADT). Yet the disease can relapse and progress to a lethal stage termed castration-resistant prostate cancer (CRPC). Reactivation of AR signaling represents the most common driver of CRPC growth, and next-generation AR signaling inhibitors (ARSIs) are now used in combination with ADT as a first-line therapy. However, ARSIs can result in selective pressure, thereby generating AR-independent tumors. The transition from AR dependence frequently accompanies a change in phenotype resembling developmental transdifferentiation or “lineage plasticity.” Neuroendocrine prostate cancer, which lacks a defined pathologic classification, is the most studied type of lineage plasticity. However, most AR-null tumors do not exhibit neuroendocrine features and are classified as “double-negative prostate cancer,” the drivers of which are poorly defined. RATIONALE Lineage plasticity studies in CRPC are limited by the lack of genetically defined patient-derived models that recapitulate the disease spectrum. To address this, we developed a biobank of organoids generated from patient biopsies to study the landscape of metastatic CRPC and allow for functional validation assays. Proteins called transcription factors (TFs) are drivers of tumor lineage plasticity. To identify the key TFs that drive the growth of AR-independent tumors, we integrated epigenetic and transcriptomic data generated from CRPC models. RESULTS We generated ATAC-seq (assay for transposase-accessible chromatin sequencing) and RNA-seq data from 22 metastatic human prostate cancer organoids, six patient-derived xenografts (PDXs), and 12 derived or traditional cell lines. We classified the 40 models into four subtypes and predicted key TFs of each subtype. We identified the well-characterized AR-dependent (CRPC-AR) and neuroendocrine subtypes (CRPC-NE) as well as two AR-negative/low groups, including a Wnt-dependent subtype (CRPC-WNT), driven by TCF/LEF TFs, and a stem cell–like (SCL) subtype (CRPC-SCL), driven by the AP-1 family of TFs. We applied RNA-seq signatures derived from the organoids to 366 patient samples from two independent CRPC datasets, which recapitulated the four-subtype classification. We found that CRPC-SCL is the second most prevalent group and is associated with shorter time under ARSI treatment compared to CRPC-AR. Additional chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicated that AP-1 works together with the proteins YAP, TAZ, and TEAD, revealing YAP/TAZ and AP-1 as potential actionable targets in CRPC-SCL. Using overexpression assays in AR-high cells, we revealed how AP-1 functions as a pioneering factor and master regulator for CRPC-SCL. CONCLUSION By using a diverse biobank of organoids, PDXs, and cell lines that recapitulate the heterogeneity of metastatic prostate cancer, we created a map of the chromatin accessibility and transcriptomic landscape of CRPC. We validated the CRPC-AR and CRPC-NE subtypes and report two subtypes of AR-negative/low samples as well as their respective key TFs. Additional analysis revealed a model in which YAP, TAZ, TEAD, and AP-1 function together and drive oncogenic growth in CRPC-SCL samples. Overall, our results show how stratification of CRPC patients into four subtypes using their transcriptomes can potentially inform appropriate clinical decisions. Identification of four subtypes of castration-resistant prostate cancer (CRPC) by integration of chromatin accessibility and transcriptomic data from organoids, patient-derived xenografts (PDXs), and cell lines. TF, transcription factor; AR, androgen receptor; NE, neuroendocrine; SCL, stem cell–like. YAP/TAZ/TEAD/AP-1 cooperation in CRPC-SCL suggests actionable targets. Application of RNA-seq signatures derived from the models to 366 patient samples recapitulates the four-subtype classification.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2017
    In:  Neoplasia Vol. 19, No. 2 ( 2017-02), p. 75-83
    In: Neoplasia, Elsevier BV, Vol. 19, No. 2 ( 2017-02), p. 75-83
    Type of Medium: Online Resource
    ISSN: 1476-5586
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2008231-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Cell Biology, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2022-01), p. 99-111
    Type of Medium: Online Resource
    ISSN: 1465-7392 , 1476-4679
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494945-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Cell Biology, Springer Science and Business Media LLC, Vol. 24, No. 2 ( 2022-02), p. 279-279
    Type of Medium: Online Resource
    ISSN: 1465-7392 , 1476-4679
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494945-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 9, No. 14 ( 2023-04-05)
    Abstract: Sufficient protein dosage of ETV4 can directly transform prostate epithelial cells, which recapitulates early human disease.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 2810933-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5310-5310
    Abstract: Castration-resistant prostate cancer (CRPC) is a heterogeneous disease with diverse drivers and mechanisms of resistance to androgen receptor (AR) therapy. We generated ATAC-seq and RNA-seq data for twenty-four metastatic human prostate cancer organoids and cell lines. Integration of chromatin accessibility profiles and transcriptomes revealed four subtypes: androgen-receptor(AR)-dependent, neuroendocrine, Wnt-dependent and epithelial mesenchymal transition (EMT). The transcriptomic signatures obtained from these four subtypes enable the classification of 100 metastatic prostate cancer patient samples from Institute Precision Medicine (IPM) and 270 published samples from SU2C study, revealing potential therapeutic vulnerabilities. Furthermore, using novel computational algorithms we constructed regulatory networks and identified the master regulators of each subtype. Currently we're carrying out western blot and quantitative PCR to confirm the subtypes of all prostate cancer models we use, and using drug sensitivity test, CRISPR knockout and cell competition assay to validate the functions of candidates in each subtype. Our study has characterized global chromatin accessibility landscape and transcriptome in the largest number of metastatic prostate cancer models, which revealed novel subtypes and corresponding tumor drivers. Collectively, these organoids, cell lines and matching sequence data provide a resource to the community to study various CRPC models. The molecular classification and corresponding master regulators reveal new drug targets and could potentially guide future therapeutic studies. Citation Format: Fanying Tang, Chen Khuan Wong, Sandra Cohen, Cindy Lee, Minwei Liu, Rohan Bareja, Kenneth Eng, Shaham Beg, Loredana Puca, Cora Sternberg, Juan Miguel Mosquera, Himisha Beltran, Andrea Sboner, Yu Chen, Ekta Khurana. Chromatin accessibility landscape and transcriptome of castration resistant prostate cancers reveals novel subtypes and diverse master regulators [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5310.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. NG10-NG10
    Abstract: Untreated prostate cancers rely on androgen receptor (AR) signaling for growth and survival, forming the basis for the initial efficacy of androgen deprivation therapy (ADT). Yet the disease can relapse and progress to a lethal stage termed castration-resistant prostate cancer (CRPC). Reactivation of AR signaling represents the most common driver of CRPC growth, and next-generation AR signaling inhibitors (ARSIs) are now used in combination with ADT as first-line therapy. However, ARSIs can result in selective pressure, thereby generating AR-independent tumors. The transition from AR dependence frequently accompanies a change in a phenotype resembling developmental transdifferentiation or “lineage plasticity”. Neuroendocrine prostate cancer, which lacks a defined pathologic classification, is the most studied type of lineage plasticity. However, most AR-null tumors do not exhibit neuroendocrine features and are classified as “double-negative prostate cancer”, the drivers of which are poorly defined. Lineage plasticity studies in CRPC are limited by the lack of genetically defined patient-derived models that recapitulate the disease spectrum. To address this, we developed a biobank of organoids generated from patient biopsies to study the landscape of metastatic CRPC and allow for functional validation assays. Proteins called transcription factors (TFs) are drivers of tumor lineage plasticity. To identify the key TFs that drive the growth of AR-independent tumors, we integrated epigenetic and transcriptomic data generated from CRPC models. We generated ATAC-seq (assay for transposase-accessible chromatin sequencing) and RNA-seq data from 22 metastatic human prostate cancer organoids, six patient-derived xenografts (PDXs), and 12 derived or traditional cell lines. We classified the 40 models into four subtypes and predicted key TFs of each subtype. Besides the well-characterized AR-dependent (CRPC-AR) and neuroendocrine subtypes (CRPC-NE), we identified two novel AR-negative/low groups, including a Wnt-dependent subtype (CRPC-WNT), driven by TCF/LEF TFs, and a stem cell-like (SCL) subtype (CRPC-SCL), driven by the AP-1 family of TFs. To apply the subtype classification to patient samples, we derived RNA-seq signatures from the organoids and applied them to 366 patient samples from two independent CRPC cohorts. The generated signatures recapitulated the four-subtype classification and revealed that CRPC-SCL is the second most prevalent group. Patients from CRPC-SCL are also associated with shorter time under ARSI treatment compared to CRPC-AR, indicating that the ARSI treatments were less effective for CRPC-SCL patients. Additional chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicated that AP-1 (FOSL1) collaboratively binds with TEAD and transcription coactivators, YAP and TAZ. Knocking down of AP-1 (FOSL1), YAP/TAZ decreased cell growth of CRPC-SCL and showed a decrease of chromatin accessibility at CRPC-SCL-specific open chromatin sites and down-regulation of YAP/TAZ target gene expression. In addition, the expression of AP-1 (FOSL1) decreased upon YAP/TAZ knockdown suggesting a positive feedback loop as well as YAP/TAZ as actional targets in CRPC-SCL. We used two small-molecule inhibitors, verteporfin and T-5224, that act on the YAP/TAZ/AP-1 pathway for their potential use as therapeutics for CRPC-SCL tumors, both inhibited the growth of samples from CRPC-SCL but not CRPC-AR. By overexpressing an AP-1 family gene (FOSL1) in AR-high cells, we observed an increase in chromatin accessibility at CRPC-SCL-specific open chromatin sites as well as significant up-regulation of CRPC-SCL signature genes, suggesting that AP-1 functions as a pioneering factor and master regulator for CRPC-SCL. All this work was recently published in Science (Tang, Xu et al. Science, 2022) where I am the co-first author. In summary, by using a diverse biobank of organoids, PDXs, and cell lines that recapitulate the heterogeneity of metastatic prostate cancer, we created a map of the chromatin accessibility and transcriptomic landscape of CRPC. We validated the CRPC-AR and CRPC-NE subtypes and report two novel subtypes of AR-negative/low samples, CRPC-SCL and CRPC-WNT, as well as their respective key TFs. Additional analysis revealed a model in which YAP, TAZ, TEAD, and AP-1 function together and drive oncogenic growth in CRPC-SCL samples. In addition, we proposed small inhibitors of YAP and TAZ that can potentially be used to treat CRPC-SCL patients. Overall, our results show how the stratification of CRPC patients into four subtypes using their transcriptomes can potentially inform appropriate clinical decisions. Citation Format: Fanying Tang, Duo Xu, Shangqian Wang, Chen Khuan Wong, Alexander Martinez-Fundichely, Cindy J. Lee, Sandra Cohen, Jane Park, Corinne E. Hill, Kenneth Eng, Rohan Bareja, Teng Han, Eric Minwei Liu, Ann Palladino, Wei Di, Dong Gao, Wassim Abida, Shaham Beg, Loredana Puca, Maximiliano Meneses, Elisa de Stanchina, Michael F. Berger, Anuradha Gopalan, Lukas E. Dow, Juan Miguel Mosquera, Himisha Beltran, Cora N. Sternberg, Ping Chi, Howard I. Scher, Andrea Sboner, Yu Chen, Ekta Khurana. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr NG10.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2005
    In:  Journal of Materials Science Vol. 40, No. 6 ( 2005-3), p. 1367-1370
    In: Journal of Materials Science, Springer Science and Business Media LLC, Vol. 40, No. 6 ( 2005-3), p. 1367-1370
    Type of Medium: Online Resource
    ISSN: 0022-2461 , 1573-4803
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2005
    detail.hit.zdb_id: 2015305-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages