Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-09-24)
    Abstract: Aerosol particles cool the climate by scattering solar radiation and by acting as cloud condensation nuclei. Higher temperatures resulting from increased greenhouse gas levels have been suggested to lead to increased biogenic secondary organic aerosol and cloud condensation nuclei concentrations creating a negative climate feedback mechanism. Here, we present direct observations on this feedback mechanism utilizing collocated long term aerosol chemical composition measurements and remote sensing observations on aerosol and cloud properties. Summer time organic aerosol loadings showed a clear increase with temperature, with simultaneous increase in cloud condensation nuclei concentration in a boreal forest environment. Remote sensing observations revealed a change in cloud properties with an increase in cloud reflectivity in concert with increasing organic aerosol loadings in the area. The results provide direct observational evidence on the significance of this negative climate feedback mechanism.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 20 ( 2020-10-22), p. 11893-11906
    Abstract: Abstract. The aerosol–radiation–meteorology feedback loop is the process by which aerosols interact with solar radiation to influence boundary layer meteorology. Through this feedback, aerosols cause cooling of the surface, resulting in reduced buoyant turbulence, enhanced atmospheric stratification and suppressed boundary layer growth. These changes in meteorology result in the accumulation of aerosols in a shallow boundary layer, which can enhance the extent of aerosol–radiation interactions. The feedback effect is thought to be important during periods of high aerosol concentrations, for example, during urban haze. However, direct quantification and isolation of the factors and processes affecting the feedback loop have thus far been limited to observations and low-resolution modelling studies. The coupled large-eddy simulation (LES)–aerosol model, the University of California, Los Angeles large-eddy simulation – Sectional Aerosol Scheme for Large Scale Applications (UCLALES-SALSA), allows for direct interpretation on the sensitivity of boundary layer dynamics to aerosol perturbations. In this work, UCLALES-SALSA has for the first time been explicitly set up to model the urban environment, including addition of an anthropogenic heat flux and treatment of heat storage terms, to examine the sensitivity of meteorology to the newly coupled aerosol–radiation scheme. We find that (a) sensitivity of boundary layer dynamics in the model to initial meteorological conditions is extremely high, (b) simulations with high aerosol loading (220 µg m−3) compared to low aerosol loading (55 µg m−3) cause overall surface cooling and a reduction in sensible heat flux, turbulent kinetic energy and planetary boundary layer height for all 3 d examined, and (c) initial meteorological conditions impact the vertical distribution of aerosols throughout the day.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Geoscientific Model Development Vol. 10, No. 1 ( 2017-01-13), p. 169-188
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 10, No. 1 ( 2017-01-13), p. 169-188
    Abstract: Abstract. Challenges in understanding the aerosol–cloud interactions and their impacts on global climate highlight the need for improved knowledge of the underlying physical processes and feedbacks as well as their interactions with cloud and boundary layer dynamics. To pursue this goal, increasingly sophisticated cloud-scale models are needed to complement the limited supply of observations of the interactions between aerosols and clouds. For this purpose, a new large-eddy simulation (LES) model, coupled with an interactive sectional description for aerosols and clouds, is introduced. The new model builds and extends upon the well-characterized UCLA Large-Eddy Simulation Code (UCLALES) and the Sectional Aerosol module for Large-Scale Applications (SALSA), hereafter denoted as UCLALES-SALSA. Novel strategies for the aerosol, cloud and precipitation bin discretisation are presented. These enable tracking the effects of cloud processing and wet scavenging on the aerosol size distribution as accurately as possible, while keeping the computational cost of the model as low as possible. The model is tested with two different simulation set-ups: a marine stratocumulus case in the DYCOMS-II campaign and another case focusing on the formation and evolution of a nocturnal radiation fog. It is shown that, in both cases, the size-resolved interactions between aerosols and clouds have a critical influence on the dynamics of the boundary layer. The results demonstrate the importance of accurately representing the wet scavenging of aerosol in the model. Specifically, in a case with marine stratocumulus, precipitation and the subsequent removal of cloud activating particles lead to thinning of the cloud deck and the formation of a decoupled boundary layer structure. In radiation fog, the growth and sedimentation of droplets strongly affect their radiative properties, which in turn drive new droplet formation. The size-resolved diagnostics provided by the model enable investigations of these issues with high detail. It is also shown that the results remain consistent with UCLALES (without SALSA) in cases where the dominating physical processes remain well represented by both models.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2456725-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 18 ( 2022-09-22), p. 12417-12441
    Abstract: Abstract. We carried out a closure study of aerosol–cloud interactions during stratocumulus formation using a large eddy simulation model UCLALES–SALSA (University of California Los Angeles large eddy simulation model–sectional aerosol module for large applications) and observations from the 2020 cloud sampling campaign at Puijo SMEAR IV (Station for Measuring Ecosystem–Atmosphere Relations) in Kuopio, Finland. The unique observational setup combining in situ and cloud remote sensing measurements allowed a closer look into the aerosol size–composition dependence of droplet activation and droplet growth in turbulent boundary layer driven by surface forcing and radiative cooling. UCLALES–SALSA uses spectral bin microphysics for aerosols and hydrometeors, and incorporates a full description of their interactions into the turbulent-convective radiation-dynamical model of stratocumulus. Based on our results, the model successfully described the probability distribution of updraught velocities and consequently the size dependency of aerosol activation into cloud droplets, and further recreated the size distributions for both interstitial aerosol and cloud droplets. This is the first time such a detailed closure is achieved not only accounting for activation of cloud droplets in different updraughts, but also accounting for processes evaporating droplets and drizzle production through coagulation–coalescence. We studied two cases of cloud formation, one diurnal (24 September 2020) and one nocturnal (31 October 2020), with high and low aerosol loadings, respectively. Aerosol number concentrations differ more than 1 order of magnitude between cases and therefore, lead to cloud droplet number concentration (CDNC) values which range from less than 100 cm−3 up to 1000 cm−3. Different aerosol loadings affected supersaturation at the cloud base, and thus the size of aerosol particles activating to cloud droplets. Due to higher CDNC, the mean size of cloud droplets in the diurnal high aerosol case was lower. Thus, droplet evaporation in downdraughts affected more the observed CDNC at Puijo altitude compared to the low aerosol case. In addition, in the low aerosol case, the presence of large aerosol particles in the accumulation mode played a significant role in the droplet spectrum evolution as it promoted the drizzle formation through collision and coalescence processes. Also, during the event, the formation of ice particles was observed due to subzero temperature at the cloud top. Although the modelled number concentration of ice hydrometeors was too low to be directly measured, the retrieval of hydrometeor sedimentation velocities with cloud radar allowed us to assess the realism of modelled ice particles. The studied cases are presented in detail and can be further used by the cloud modellers to test and validate their models in a well-characterized modelling setup. We also provide recommendations on how increasing amount of information on aerosol properties could improve the understanding of processes affecting cloud droplet number and liquid water content in stratiform clouds.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 4 ( 2022-03-03), p. 2937-2953
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 4 ( 2022-03-03), p. 2937-2953
    Abstract: Abstract. Beijing suffers from poor air quality, particularly during wintertime haze episodes when concentrations of PM2.5 (particulate matter with a diameter 〈 2.5 µm) can peak at 〉 400 µg m−3. Black carbon (BC), an aerosol which strongly absorbs solar radiation, can make up to 10 % of PM2.5 in Beijing. BC is of interest due to its climatic and health impacts. BC has also been found to impact planetary boundary layer (PBL) meteorology. Through interacting with radiation and altering the thermal profile of the lower atmosphere, BC can either suppress or enhance PBL development depending on the properties and altitude of the BC layer. Previous research assessing the impact of BC on PBL meteorology has been investigated through the use of regional models, which are limited both by resolution and the chosen boundary layer schemes. In this work, we apply a high-resolution model (UCLALES-SALSA) that couples an aerosol and radiative transfer model with large-eddy simulation (LES) to quantify the impact of BC at different altitudes on PBL dynamics using conditions from a specific haze episode which occurred from 1–4 December 2016 in Beijing. Results presented in this paper quantify the heating rate of BC at various altitudes to be between 0.01 and 0.016 K/h per µg/m3 of BC, increasing with altitude but decreasing around PBL top. Through utilising a high-resolution model which explicitly calculates turbulent dynamics, this paper showcases the impact of BC on PBL dynamics both within and above the PBL. These results show that BC within the PBL increases maximum PBL height by 0.4 % but that the same loading of BC above the PBL can suppress PBL height by 6.5 %. Furthermore, when BC is present throughout the column, the impact of BC suppressing PBL development is further maximised, with BC causing a 17 % decrease in maximum PBL height compared to only scattering aerosols. Assessing the impact of these opposite effects, in this paper, we present a mechanism through which BC may play a prominent role in the intensity and longevity of Beijing's pollution episodes.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-04-03)
    Abstract: Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD + ) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD + and downregulation of Nrk2 , an NAD + biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD + repletion therapy in cachectic mice reveals that NAD + precursor, vitamin B3 niacin, efficiently corrects tissue NAD + levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD + in the pathophysiology of human cancer cachexia. Overall, our results propose NAD + metabolism as a therapy target for cachectic cancer patients.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 6 ( 2022-03-21), p. 3763-3778
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 6 ( 2022-03-21), p. 3763-3778
    Abstract: Abstract. Shallow marine mixed-phase clouds are important for the Earth's radiative balance, but modelling their formation and dynamics is challenging. These clouds depend on boundary layer turbulence and cloud top radiative cooling, which is related to the cloud phase. The fraction of frozen droplets depends on the availability of suitable ice-nucleating particles (INPs), which initiate droplet freezing. While mineral dust is the dominating INP type in most regions, high-latitude boundary layer clouds can be dependent on local marine INP emissions, which are often related to biogenic sources including phytoplankton. Here we use high resolution large eddy simulations to examine the potential effects of marine emissions on boundary layer INP concentrations and their effects on clouds. Surface emissions have a direct effect on INP concentration in a typical well-mixed boundary layer whereas a steep inversion can block the import of background INPs from the free troposphere. The importance of the marine source depends on the background INP concentration, so that marine INP emissions become more important with lower background INP concentrations. For the INP budget it is also important to account for INP recycling. Finally, with the high-resolution model we show how ice nucleation hotspots and high INP concentrations are focused on updraught regions. Our results show that marine INP emissions contribute directly to the boundary layer INP budget and therefore have an influence on mixed-phase clouds.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Atmospheric Chemistry and Physics Vol. 20, No. 19 ( 2020-10-14), p. 11639-11654
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 19 ( 2020-10-14), p. 11639-11654
    Abstract: Abstract. The large-eddy model UCLALES–SALSA, with an exceptionally detailed aerosol description for both aerosol number and chemical composition, has been extended for ice and mixed-phase clouds. Comparison to a previous mixed-phase cloud model intercomparison study confirmed the accuracy of newly implemented ice microphysics. A further simulation with a heterogeneous ice nucleation scheme, in which ice-nucleating particles (INPs) are also a prognostic variable, captured the typical layered structure of Arctic mid-altitude mixed-phase cloud: a liquid layer near cloud top and ice within and below the liquid layer. In addition, the simulation showed a realistic freezing rate of droplets within the vertical cloud structure. The represented detailed sectional ice microphysics with prognostic aerosols is crucially important in reproducing mixed-phase clouds.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 7 ( 2022-04-07), p. 4523-4537
    Abstract: Abstract. The number of cloud droplets formed at the cloud base depends on both the properties of aerosol particles and the updraft velocity of an air parcel at the cloud base. As the spatial scale of updrafts is too small to be resolved in global atmospheric models, the updraft velocity is commonly parameterised based on the available turbulent kinetic energy. Here we present alternative methods through parameterising updraft velocity based on high-resolution large-eddy simulation (LES) runs in the case of marine stratocumulus clouds. First we use our simulations to assess the accuracy of a simple linear parameterisation where the updraft velocity depends only on cloud top radiative cooling. In addition, we present two different machine learning methods (Gaussian process emulation and random forest) that account for different boundary layer conditions and cloud properties. We conclude that both machine learning parameterisations reproduce the LES-based updraft velocities at about the same accuracy, while the simple approach employing radiative cooling only produces on average lower coefficient of determination and higher root mean square error values. Finally, we apply these machine learning methods to find the key parameters affecting cloud base updraft velocities.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 9 ( 2020-05-12), p. 5527-5546
    Abstract: Abstract. We use the ECHAM-HAMMOZ aerosol-climate model to assess the effects of black carbon (BC) mitigation measures on Arctic climate. To this end we constructed several mitigation scenarios that implement all currently existing legislation and then implement further reductions of BC in a successively increasing global area, starting from the eight member states of the Arctic Council, expanding to its active observer states, then to all observer states, and finally to the entire globe. These scenarios also account for the reduction of the co-emitted organic carbon (OC) and sulfate (SU). We find that, even though the additional BC emission reductions in the member states of the Arctic Council are small, the resulting reductions in Arctic BC mass burdens can be substantial, especially in the lower troposphere close to the surface. This in turn means that reducing BC emissions only in the Arctic Council member states can reduce BC deposition in the Arctic by about 30 % compared to the current legislation, which is about 60 % of what could be achieved if emissions were reduced globally. Emission reductions further south affect Arctic BC concentrations at higher altitudes and thus only have small additional effects on BC deposition in the Arctic. The direct radiative forcing scales fairly well with the total amount of BC emission reduction, independent of the location of the emission source, with a maximum direct radiative forcing in the Arctic of about −0.4 W m−2 for a global BC emission reduction. On the other hand, the Arctic effective radiative forcing due to the BC emission reductions, which accounts for aerosol–cloud interactions, is small compared to the direct aerosol radiative forcing. This happens because BC- and OC-containing particles can act as cloud condensation nuclei, which affects cloud reflectivity and lifetime and counteracts the direct radiative forcing of BC. Additionally, the effective radiative forcing is accompanied by very large uncertainties that originate from the strong natural variability of meteorology, cloud cover, and surface albedo in the Arctic. We further used the TM5-FASST model to assess the benefits of the aerosol emission reductions for human health. We found that a full implementation in all Arctic Council member and observer states could reduce the annual global number of premature deaths by 329 000 by the year 2030, which amounts to 9 % of the total global premature deaths due to particulate matter.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages