Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 662 ( 2022-06), p. A55-
    Abstract: Context. The assembly history of the stellar component of a massive elliptical galaxy is closely related to that of its dark matter halo. Measuring how the properties of galaxies correlate with their halo mass can therefore help to understand their evolution. Aims. We investigate how the dark matter halo mass of elliptical galaxies varies as a function of their properties, using weak gravitational lensing observations. To minimise the chances of biases, we focus on the following galaxy properties that can be determined robustly: the surface brightness profile and the colour. Methods. We selected 2409 central massive elliptical galaxies (log M * / M ⊙  ≳ 11.4) from the Sloan Digital Sky Survey spectroscopic sample. We first measured their surface brightness profile and colours by fitting Sérsic models to photometric data from the Kilo-Degree Survey (KiDS). We fitted their halo mass distribution as a function of redshift, rest-frame r -band luminosity, half-light radius, and rest-frame u  −  g colour, using KiDS weak lensing measurements and a Bayesian hierarchical approach. For the sake of robustness with respect to assumptions on the large-radii behaviour of the surface brightness, we repeated the analysis replacing the total luminosity and half-light radius with the luminosity within a 10 kpc aperture, L r , 10 , and the light-weighted surface brightness slope, Γ 10 . Results. We did not detect any correlation between the halo mass and either the half-light radius or colour at fixed redshift and luminosity. Using the robust surface brightness parameterisation, we found that the halo mass correlates weakly with L r , 10 and anti-correlates with Γ 10 . At fixed redshift, L r , 10 and Γ 10 , the difference in the average halo mass between galaxies at the 84th percentile and 16th percentile of the colour distribution is 0.00 ± 0.11 dex. Conclusion. Our results indicate that the average star formation efficiency of massive elliptical galaxies has little dependence on their final size or colour. This suggests that the origin of the diversity in the size and colour distribution of these objects lies with properties other than the halo mass.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 518, No. 3 ( 2022-11-30), p. 3557-3575
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 518, No. 3 ( 2022-11-30), p. 3557-3575
    Abstract: In this work, we have implemented a detailed physical model of galaxy chemical enrichment into the Astraeus (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dark matter simUlationS) framework which couples galaxy formation and reionization in the first billion years. Simulating galaxies spanning over 2.5 orders of magnitude in halo mass with $M_{\rm h} \sim 10^{8.9}{-}10^{11.5}\,{\rm M_\odot}$ ($M_{\rm h} \sim 10^{8.9}{-}10^{12.8}\rm M_\odot$) at z ∼ 10 (5), we find: (i) smooth accretion of metal-poor gas from the intergalactic medium (IGM) plays a key role in diluting the interstellar medium interstellar medium metallicity which is effectively restored due to self-enrichment from star formation; (ii) a redshift averaged gas-mass loading factor that depends on the stellar mass as $\eta _{\rm g} \approx 1.38 ({M_*}/{10^{10}\, {\rm \rm M_\odot }})^{-0.43}$; (iii) the mass–metallicity relation is already in place at z ∼ 10 and shows effectively no redshift evolution down to z ∼ 5; (iv) for a given stellar mass, the metallicity decreases with an increase in the star formation rate (SFR); (v) the key properties of the gas-phase metallicity (in units of 12 + log(O/H), stellar mass, SFR and redshift are linked through a high-redshift fundamental plane of metallicity (HFPZ) for which we provide a functional form; (vi) the mass–metallicity–SFR relations are effectively independent of the reionization radiative feedback model for $M_* {\,\, \buildrel\gt \over \sim \,\,}10^{6.5}\rm M_\odot$ galaxies; (vii) while low-mass galaxies ($M_{\rm h} {\,\, \buildrel\lt \over \sim \,\,}10^9\,\rm M_\odot$) are the key contributors to the metal budget of the IGM at early times, higher mass haloes provide about 50 per cent of the metal budget at lower redshifts.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 498, No. 4 ( 2020-10-06), p. 5704-5719
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 498, No. 4 ( 2020-10-06), p. 5704-5719
    Abstract: The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is a major facility to carry out spectroscopic surveys for cosmology and galaxy evolution studies. The seventh data release of the LAMOST ExtraGAlactic Survey (LEGAS) is currently available and including redshifts of 193 361 galaxies. These sources are spread over $\sim 11\, 500$ deg2 of the sky, largely overlapping with other imaging (SDSS and HSC) and spectroscopic (BOSS) surveys. The estimated depth of the galaxy sample, r ∼ 17.8, the high signal-to-noise ratio, and the spectral resolution R = 1800, make the LAMOST spectra suitable for galaxy velocity dispersion (VD) measurements, which are invaluable to study the structure and formation of galaxies and to determine their central dark matter content. We present the first estimates of central VD of $\sim 86\, 000$ galaxies in LAMOST footprint. We have used a wrap-up procedure to perform the spectral fitting using ppxf, and derive VD measurements. Statistical errors are also assessed by comparing LAMOST VD estimates with the ones of SDSS and BOSS over a common sample of $\sim 51\, 000$ galaxies. The two data sets show a good agreement, within the statistical errors, in particular when VD values are corrected to 1 effective radius aperture. We also present a preliminary mass–σ relation and find consistency with previous analyses based on local galaxy samples. These first results suggest that LAMOST spectra are suitable for galaxy VD measurements to complement the available catalogues of galaxy internal kinematics in the Northern hemisphere. We plan to expand this analysis to next LAMOST data releases.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  Monthly Notices of the Royal Astronomical Society ( 2010-05), p. no-no
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), ( 2010-05), p. no-no
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Physical Society (APS) ; 2011
    In:  Physical Review D Vol. 84, No. 4 ( 2011-8-11)
    In: Physical Review D, American Physical Society (APS), Vol. 84, No. 4 ( 2011-8-11)
    Type of Medium: Online Resource
    ISSN: 1550-7998 , 1550-2368
    Language: English
    Publisher: American Physical Society (APS)
    Publication Date: 2011
    detail.hit.zdb_id: 2844732-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 650 ( 2021-06), p. A113-
    Abstract: We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter ( g bar ) with the observed gravitational acceleration ( g obs ), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in g obs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between g obs and g bar agrees well with the MG predictions. In addition, we find a difference of at least 6 σ between the RARs of early- and late-type galaxies (split by Sérsic index and u  −  r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant ( M gas  ≈  M ⋆ ) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 666 ( 2022-10), p. A85-
    Abstract: Aims. In the era of large sky surveys, photometric redshifts (photo- z ) represent crucial information for galaxy evolution and cosmology studies. In this work, we propose a new machine learning (ML) tool called Galaxy morphoto-Z with neural Networks (GaZNet-1), which uses both images and multi-band photometry measurements to predict galaxy redshifts, with accuracy, precision and outlier fraction superior to standard methods based on photometry only. Methods. As a first application of this tool, we estimate photo- z for a sample of galaxies in the Kilo-Degree Survey (KiDS). GaZNet-1 is trained and tested on ∼140 000 galaxies collected from KiDS Data Release 4 (DR4), for which spectroscopic redshifts are available from different surveys. This sample is dominated by bright (MAG_AUTO 〈 21) and low-redshift ( z   〈  0.8) systems; however, we could use ∼6500 galaxies in the range 0.8  〈   z   〈  3 to effectively extend the training to higher redshift. The inputs are the r -band galaxy images plus the nine-band magnitudes and colors from the combined catalogs of optical photometry from KiDS and near-infrared photometry from the VISTA Kilo-degree Infrared survey. Results. By combining the images and catalogs, GaZNet-1 can achieve extremely high precision in normalized median absolute deviation (NMAD = 0.014 for lower redshift and NMAD = 0.041 for higher redshift galaxies) and a low fraction of outliers (0.4% for lower and 1.27% for higher redshift galaxies). Compared to ML codes using only photometry as input, GaZNet-1 also shows a ∼10%−35% improvement in precision at different redshifts and a ∼45% reduction in the fraction of outliers. We finally discuss the finding that, by correctly separating galaxies from stars and active galactic nuclei, the overall photo- z outlier fraction of galaxies can be cut down to 0.3%.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    IOP Publishing ; 2012
    In:  Journal of Physics: Conference Series Vol. 354 ( 2012-03-14), p. 012021-
    In: Journal of Physics: Conference Series, IOP Publishing, Vol. 354 ( 2012-03-14), p. 012021-
    Type of Medium: Online Resource
    ISSN: 1742-6596
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 2166409-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 639 ( 2020-07), p. A136-
    Abstract: Context. A possible pathway for understanding the events and the mechanisms involved in galaxy formation and evolution is an in-depth investigation of the galactic and inter-galactic fossil sub-structures with long dynamical timescales: stars in the field and in stellar clusters. Aims. This paper continues the Fornax Deep Survey (FDS) series. Following previous studies dedicated to extended Fornax cluster members, we present the catalogs of compact stellar systems in the Fornax cluster, as well as extended background sources and point-like sources. Methods. We derived ugri photometry of ∼1.7 million sources over the ∼21 square degree area of FDS centered on the bright central galaxy NGC 1399. For a wider area, of ∼27 square degrees extending in the direction of NGC 1316, we provided gri photometry for ∼3.1 million sources. To improve the morphological characterization of sources, we generated multi-band image stacks by coadding the best-seeing gri -band single exposures with a cut at full width at half maximum ( FWHM ) ≤ 0.″9. We used the multi-band stacks as master detection frames, with a FWHM improved by ∼15% and a FWHM variability from field to field reduced by a factor of ∼2.5 compared to the pass-band with the best FWHM, namely the r -band. The identification of compact sources, in particular, globular clusters (GC), was obtained from a combination of photometric (e.g., colors, magnitudes) and morphometric (e.g., concentration index, elongation, effective radius) selection criteria, also taking as reference the properties of sources with well-defined classifications from spectroscopic or high-resolution imaging data. Results. Using the FDS catalogs, we present a preliminary analysis of GC distributions in the Fornax area. The study confirms and extends further previous results that were limited to a smaller survey area. We observed the inter-galactic population of GCs, a population of mainly blue GCs centered on NGC 1399, extending over ∼0.9 Mpc, with an ellipticity ϵ  ∼ 0.65 and a small tilt in the direction of NGC 1336. Several sub-structures extend over ∼0.5 Mpc along various directions. Two of these structures do not cross any bright galaxy; one of them appears to be connected to NGC 1404, a bright galaxy close to the cluster core and particularly poor in GCs. Using the gri catalogs, we analyze the GC distribution over the extended FDS area and do not find any obvious GC sub-structure bridging the two brightest cluster galaxies, namely, NGC 1316 and NGC 1399. Although NGC 1316 is more than twice as bright of NGC 1399 in optical bands, using gri data, we estimate a GC population that is richer by a factor of ∼3−4 around NGC 1399, as compared to NGC 1316, out to galactocentric distances of ∼40′ or ∼230 kpc.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 632 ( 2019-12), p. A56-
    Abstract: Context. The KiDS Strongly lensed QUAsar Detection project (KiDS-SQuaD) is aimed at finding as many previously undiscovered gravitational lensed quasars as possible in the Kilo Degree Survey. This is the second paper of this series where we present a new, automatic object-classification method based on the machine learning technique. Aims. The main goal of this paper is to build a catalogue of bright extragalactic objects (galaxies and quasars) from the KiDS Data Release 4, with minimum stellar contamination and preserving the completeness as much as possible. We show here that this catalogue represents the perfect starting point to search for reliable gravitationally lensed quasar candidates. Methods. After testing some of the most used machine learning algorithms, decision-tree-based classifiers, we decided to use CatBoost, which was specifically trained with the aim of creating a sample of extragalactic sources that is as clean of stars as possible. We discuss the input data, define the training sample for the classifier, give quantitative estimates of its performances, and finally describe the validation results with Gaia DR2, AllWISE, and GAMA catalogues. Results. We built and made available to the scientific community the KiDS Bright EXtraGalactic Objects catalogue (KiDS-BEXGO), specifically created to find gravitational lenses but applicable to a wide number of scientific purposes. The KiDS-BEXGO catalogue is made of ≈6 million sources classified as quasars (≈200 000) and galaxies (≈5.7 M) up to r   〈  22 m . To demonstrate the potential of the catalogue in the search for strongly lensed quasars, we selected ≈950 “Multiplets”: close pairs of quasars or galaxies surrounded by at least one quasar. We present cutouts and coordinates of the 12 most reliable gravitationally lensed quasar candidates. We showed that employing a machine learning method decreases the stellar contaminants within the gravitationally lensed candidates, comparing the current results to the previous ones, presented in the first paper from this series. Conclusions. Our work presents the first comprehensive identification of bright extragalactic objects in KiDS DR4 data, which is, for us, the first necessary step towards finding strong gravitational lenses in wide-sky photometric surveys, but has also many other more general astrophysical applications.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages