Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 12, No. 3 ( 2020-09-23), p. 2289-2309
    Abstract: Abstract. Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2475469-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 10 ( 2022-10-5)
    Abstract: The Neckar Valley and the Swabian Jura in southwest Germany comprise a hotspot for severe convective storms, causing tens of millions of euros in damage each year. Possible reasons for the high frequency of thunderstorms and the associated event chain across compartments were investigated in detail during the hydro-meteorological field campaign Swabian MOSES carried out between May and September 2021. Researchers from various disciplines established more than 25 temporary ground-based stations equipped with state-of-the-art in situ and remote sensing observation systems, such as lidars, dual-polarization X- and C-band Doppler weather radars, radiosondes including stratospheric balloons, an aerosol cloud chamber, masts to measure vertical fluxes, autosamplers for water probes in rivers, and networks of disdrometers, soil moisture, and hail sensors. These fixed-site observations were supplemented by mobile observation systems, such as a research aircraft with scanning Doppler lidar, a cosmic ray neutron sensing rover, and a storm chasing team launching swarmsondes in the vicinity of hailstorms. Seven Intensive Observation Periods (IOPs) were conducted on a total of 21 operating days. An exceptionally high number of convective events, including both unorganized and organized thunderstorms such as multicells or supercells, occurred during the study period. This paper gives an overview of the Swabian MOSES (Modular Observation Solutions for Earth Systems) field campaign, briefly describes the observation strategy, and presents observational highlights for two IOPs.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741235-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 13, No. 7 ( 2021-03-27), p. 1286-
    Abstract: With the development of low-cost, lightweight, integrated thermal infrared-multispectral cameras, unmanned aerial systems (UAS) have recently become a flexible complement to eddy covariance (EC) station methods for mapping surface energy fluxes of vegetated areas. These sensors facilitate the measurement of several site characteristics in one flight (e.g., radiometric temperature, vegetation indices, vegetation structure), which can be used alongside in-situ meteorology data to provide spatially-distributed estimates of energy fluxes at very high resolution. Here we test one such system (MicaSense Altum) integrated into an off-the-shelf long-range vertical take-off and landing (VTOL) unmanned aerial vehicle, and apply and evaluate our method by comparing flux estimates with EC-derived data, with specific and novel focus on heterogeneous vegetation communities at three different sites in Germany. Firstly, we present an empirical method for calibrating airborne radiometric temperature in standard units (K) using the Altum multispectral and thermal infrared instrument. Then we provide detailed methods using the two-source energy balance model (TSEB) for mapping net radiation (Rn), sensible (H), latent (LE) and ground (G) heat fluxes at 〈 0.82 m resolution, with root mean square errors (RMSE) less than 45, 37, 39, 52 W m−2 respectively. Converting to radiometric temperature using our empirical method resulted in a 19% reduction in RMSE across all fluxes compared to the standard conversion equation provided by the manufacturer. Our results show the potential of this UAS for mapping energy fluxes at high resolution over large areas in different conditions, but also highlight the need for further surveys of different vegetation types and land uses.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Sensors, MDPI AG, Vol. 10, No. 1 ( 2010-01-13), p. 584-612
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2010
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 375, No. 1810 ( 2020-10-26), p. 20190524-
    Abstract: Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO 2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004–2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO 2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2010
    In:  Permafrost and Periglacial Processes Vol. 21, No. 4 ( 2010-10), p. 325-334
    In: Permafrost and Periglacial Processes, Wiley, Vol. 21, No. 4 ( 2010-10), p. 325-334
    Abstract: A coupled heat and mass transfer model simulating mass and energy balance of the soil‐snow‐atmosphere boundary layer was applied to simulate ground temperatures, together with water and ice content evolution, in the active layer of an alpine permafrost site on Schilthorn, Swiss Alps. Abrupt shifts and subsequent fluctuations in ground temperature observed in alpine permafrost boreholes at the beginning of the zero curtain phase in summer were explained by snowmelt and meltwater infiltration. Simulated water contents were compared to values derived from inverted electrical resistivity measurements and yielded a further independent validation of the model results. The study shows that infiltration into frozen soil takes place as an oscillating process in the model. This process is constrained by initial ground temperatures, infiltrability and the availability of meltwater from the snow cover. Copyright © 2010 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1045-6740 , 1099-1530
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 1479993-5
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2015
    In:  Remote Sensing Vol. 7, No. 11 ( 2015-10-29), p. 14327-14359
    In: Remote Sensing, MDPI AG, Vol. 7, No. 11 ( 2015-10-29), p. 14327-14359
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 2 ( 2020-03-02), p. 969-983
    Abstract: Abstract. Accurate measurements of turbulence statistics in the atmosphere are important for eddy-covariance measurements, wind energy research, and the validation of atmospheric numerical models. Sonic anemometers are widely used for these applications. However, these instruments are prone to probe-induced flow distortion effects, and the magnitude of the resulting errors has been debated due to the lack of an absolute reference instrument under field conditions. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of any flow distortion. This novel remote sensing instrument has otherwise very similar spatial and temporal sampling characteristics to the sonic anemometer and hence served as a reference for this comparison. The presented measurements were carried out over flat homogeneous terrain at a measurement height of 30 m. We provide a comparative statistical analysis of the resulting mean wind velocities, the standard deviations of the vertical wind speed and the friction velocity and investigate the reasons for the observed deviations based on the turbulence spectra and co-spectra. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with a comparability of 0.082 and 0.020 m s−1, respectively. Biases for these two quantities were 0.003 and 0.012 m s−1, respectively. Slightly larger differences were observed for friction velocity. Analysis of the corresponding co-spectra showed that the CSAT3B underestimates this quantity systematically by about 3 % on average as a result of co-spectral losses in the frequency range between 0.1 and 5 s−1. We also found that an angle-of-attack-dependent transducer-shadowing correction does not improve the agreement between the CSAT3B and the Physikalisch-Technische Bundesanstalt (PTB) lidar effectively.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 24, No. 5 ( 2020-05-13), p. 2457-2481
    Abstract: Abstract. The land surface and the atmospheric boundary layer are closely intertwined with respect to the exchange of water, trace gases, and energy. Nonlinear feedback and scale-dependent mechanisms are obvious by observations and theories. Modeling instead is often narrowed to single compartments of the terrestrial system or bound to traditional viewpoints of definite scientific disciplines. Coupled terrestrial hydrometeorological modeling systems attempt to overcome these limitations to achieve a better integration of the processes relevant for regional climate studies and local-area weather prediction. This study examines the ability of the hydrologically enhanced version of the Weather Research and Forecasting model (WRF-Hydro) to reproduce the regional water cycle by means of a two-way coupled approach and assesses the impact of hydrological coupling with respect to a traditional regional atmospheric model setting. It includes the observation-based calibration of the hydrological model component (offline WRF-Hydro) and a comparison of the classic WRF and the fully coupled WRF-Hydro models both with identically calibrated parameter settings for the land surface model (Noah-Multiparametrization; Noah-MP). The simulations are evaluated based on extensive observations at the Terrestrial Environmental Observatories (TERENO) Pre-Alpine Observatory for the Ammer (600 km2) and Rott (55 km2) river catchments in southern Germany, covering a 5-month period (June–October 2016). The sensitivity of seven land surface parameters is tested using the Latin-Hypercube–One-factor-At-a-Time (LH-OAT) method, and six sensitive parameters are subsequently optimized for six different subcatchments, using the model-independent Parameter Estimation and Uncertainty Analysis software (PEST). The calibration of the offline WRF-Hydro gives Nash–Sutcliffe efficiencies between 0.56 and 0.64 and volumetric efficiencies between 0.46 and 0.81 for the six subcatchments. The comparison of the classic WRF and fully coupled WRF-Hydro models, both using the calibrated parameters from the offline model, shows only tiny alterations for radiation and precipitation but considerable changes for moisture and heat fluxes. By comparison with TERENO Pre-Alpine Observatory measurements, the fully coupled model slightly outperforms the classic WRF model with respect to evapotranspiration, sensible and ground heat flux, the near-surface mixing ratio, temperature, and boundary layer profiles of air temperature. The subcatchment-based water budgets show uniformly directed variations for evapotranspiration, infiltration excess and percolation, whereas soil moisture and precipitation change randomly.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2100610-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Hydrological Processes, Wiley, Vol. 20, No. 10 ( 2006-06-30), p. 2111-2128
    Abstract: Current models of snow cover distribution, soil moisture, surface runoff and river discharge typically have very simple parameterizations of surface processes, such as degree‐day factors or single‐layer snow cover representation. For the purpose of reproducing catchment runoff, simple snowmelt routines have proven to be accurate, provided that they are carefully calibrated specifically for the catchment they are applied to. The use of more detailed models is, however, useful to understand and quantify the role of individual surface processes for catchment hydrology, snow cover status and soil moisture distribution. We introduce ALPINE3D, a model for the high‐resolution simulation of alpine surface processes, in particular snow processes. The model can be driven by measurements from automatic weather stations or by meteorological model outputs. As a preprocessing alternative, specific high‐resolution meteorological fields can be created by running a meteorological model. The core three‐dimensional ALPINE3D modules consist of a radiation balance model (which uses a view‐factor approach and includes shortwave scattering and longwave emission from terrain and tall vegetation) and a drifting snow model solving a diffusion equation for suspended snow and a saltation transport equation. The processes in the atmosphere are thus treated in three dimensions and are coupled to a distributed (in the hydrological sense of having a spatial representation of the catchment properties) one‐dimensional model of vegetation, snow and soil (SNOWPACK) using the assumption that lateral exchange is small in these media. The model is completed by a conceptual runoff module. The model can be run with a choice of modules, thus generating more or less detailed surface forcing data as input for runoff generation simulations. The model modules can be run in a parallel (distributed) mode using a GRID infrastructure to allow computationally demanding tasks. In a case study from the Dischma Valley in eastern Switzerland, we demonstrate that the model is able to simulate snow distribution as seen from a NOAA advanced very high‐resolution radiometer image. We then analyse the sensitivity of simulated snow cover distribution and catchment runoff to the use of different surface process descriptions. We compare model runoff simulations with runoff data from 10 consecutive years. The quantitative analysis shows that terrain influence on the radiation processes has a significant influence on catchment hydrology dynamics. Neglecting the role of vegetation and the spatial variability of the soil, on the other hand, had a much smaller influence on the runoff generation dynamics. We conclude that ALPINE3D is a valuable tool to investigate surface dynamics in mountains. It is currently used to investigate snow cover dynamics for avalanche warning and permafrost development and vegetation changes under climate change scenarios. It could also serve to test the output of simpler soil–vegetation–atmosphere transfer schemes used in larger scale climate or meteorological models and to create accurate soil moisture assessments for meteorological and flood forecasting. Copyright © 2006 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages